Vertically-interlaced NiFeP/MXene electrocatalyst with tunable electronic structure for high-efficiency oxygen evolution reaction

析氧 电催化剂 材料科学 氧气 氧还原反应 纳米技术 电化学 化学 电极 物理化学 有机化学
作者
Jiexin Chen,Qingwu Long,Kang Xiao,Ting Ouyang,Nan Li,Siyu Ye,Zhao‐Qing Liu
出处
期刊:Science Bulletin [Elsevier]
卷期号:66 (11): 1063-1072 被引量:283
标识
DOI:10.1016/j.scib.2021.02.033
摘要

Layered double hydroxides (LDHs) with decent oxygen evolution reaction (OER) activity have been extensively studied in the fields of energy storage and conversion. However, their poor conductivity, ease of agglomeration, and low intrinsic activity limit their practical application. To date, improvement of the intrinsic activity and stability of NiFe-LDHs through the introduction of heteroatoms or its combination with other conductive substrates to enhance their water-splitting performance has drawn increasing attention. In this study, vertically interlaced ternary phosphatised nickel/iron hybrids grown on the surface of titanium carbide flakes (NiFeP/MXene) were successfully synthesised through a hydrothermal reaction and phosphating calcination process. The optimised NiFeP/MXene exhibited a low overpotential of 286 mV at 10 mA cm−2 and a Tafel slope of 35 mV dec−1 for the OER, which exceeded the performance of several existing NiFe-based catalysts. NiFeP/MXene was further used as a water-splitting anode in an alkaline electrolyte, exhibiting a cell voltage of only 1.61 V to achieve a current density of 10 mA cm−2. Density functional theory (DFT) calculations revealed that the combination of MXene acting as a conductive substrate and the phosphating process can effectively tune the electronic structure and density of the electrocatalyst surface to promote the energy level of the d-band centre, resulting in an enhanced OER performance. This study provides a valuable guideline for designing high-performance MXene-supported NiFe-based OER catalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彼岸花完成签到 ,获得积分10
刚刚
科研小兔子完成签到,获得积分10
刚刚
sfw发布了新的文献求助10
刚刚
Zn应助梦鱼采纳,获得10
1秒前
瓦尔迪完成签到,获得积分10
1秒前
jennyyu发布了新的文献求助10
1秒前
灯灯完成签到,获得积分10
2秒前
大白天的飙摩的完成签到,获得积分10
2秒前
沉静的万天完成签到 ,获得积分10
2秒前
workwork完成签到,获得积分10
2秒前
GOODYUE完成签到,获得积分20
2秒前
轻松笙完成签到,获得积分10
3秒前
zhang完成签到,获得积分10
3秒前
aaa完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
顺顺发布了新的文献求助20
5秒前
5秒前
黎黎完成签到,获得积分10
5秒前
5秒前
camellia发布了新的文献求助10
5秒前
6秒前
6秒前
筱玉完成签到,获得积分10
6秒前
李文博发布了新的文献求助10
6秒前
斯文静曼发布了新的文献求助10
6秒前
jiaolulu完成签到,获得积分10
6秒前
优秀的枫完成签到,获得积分20
6秒前
6秒前
美嘉美完成签到,获得积分10
6秒前
7秒前
炙热芝完成签到,获得积分10
8秒前
嘒彼小星完成签到 ,获得积分10
8秒前
8秒前
哭泣的翠丝完成签到,获得积分10
9秒前
9秒前
jennyyu完成签到,获得积分10
9秒前
terence完成签到,获得积分10
9秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759