塔菲尔方程
析氧
电催化剂
过电位
材料科学
化学工程
阳极
催化作用
分解水
纳米技术
电化学
化学
电极
物理化学
生物化学
光催化
工程类
作者
Jiexin Chen,Qingwu Long,Kang Xiao,Ting Ouyang,Nan Li,Siyu Ye,Zhao‐Qing Liu
标识
DOI:10.1016/j.scib.2021.02.033
摘要
Layered double hydroxides (LDHs) with decent oxygen evolution reaction (OER) activity have been extensively studied in the fields of energy storage and conversion. However, their poor conductivity, ease of agglomeration, and low intrinsic activity limit their practical application. To date, improvement of the intrinsic activity and stability of NiFe-LDHs through the introduction of heteroatoms or its combination with other conductive substrates to enhance their water-splitting performance has drawn increasing attention. In this study, vertically interlaced ternary phosphatised nickel/iron hybrids grown on the surface of titanium carbide flakes (NiFeP/MXene) were successfully synthesised through a hydrothermal reaction and phosphating calcination process. The optimised NiFeP/MXene exhibited a low overpotential of 286 mV at 10 mA cm−2 and a Tafel slope of 35 mV dec−1 for the OER, which exceeded the performance of several existing NiFe-based catalysts. NiFeP/MXene was further used as a water-splitting anode in an alkaline electrolyte, exhibiting a cell voltage of only 1.61 V to achieve a current density of 10 mA cm−2. Density functional theory (DFT) calculations revealed that the combination of MXene acting as a conductive substrate and the phosphating process can effectively tune the electronic structure and density of the electrocatalyst surface to promote the energy level of the d-band centre, resulting in an enhanced OER performance. This study provides a valuable guideline for designing high-performance MXene-supported NiFe-based OER catalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI