Vertically-interlaced NiFeP/MXene electrocatalyst with tunable electronic structure for high-efficiency oxygen evolution reaction

析氧 电催化剂 材料科学 氧气 氧还原反应 纳米技术 电化学 化学 电极 物理化学 有机化学
作者
Jiexin Chen,Qingwu Long,Kang Xiao,Ting Ouyang,Nan Li,Siyu Ye,Zhao‐Qing Liu
出处
期刊:Science Bulletin [Elsevier]
卷期号:66 (11): 1063-1072 被引量:333
标识
DOI:10.1016/j.scib.2021.02.033
摘要

Layered double hydroxides (LDHs) with decent oxygen evolution reaction (OER) activity have been extensively studied in the fields of energy storage and conversion. However, their poor conductivity, ease of agglomeration, and low intrinsic activity limit their practical application. To date, improvement of the intrinsic activity and stability of NiFe-LDHs through the introduction of heteroatoms or its combination with other conductive substrates to enhance their water-splitting performance has drawn increasing attention. In this study, vertically interlaced ternary phosphatised nickel/iron hybrids grown on the surface of titanium carbide flakes (NiFeP/MXene) were successfully synthesised through a hydrothermal reaction and phosphating calcination process. The optimised NiFeP/MXene exhibited a low overpotential of 286 mV at 10 mA cm−2 and a Tafel slope of 35 mV dec−1 for the OER, which exceeded the performance of several existing NiFe-based catalysts. NiFeP/MXene was further used as a water-splitting anode in an alkaline electrolyte, exhibiting a cell voltage of only 1.61 V to achieve a current density of 10 mA cm−2. Density functional theory (DFT) calculations revealed that the combination of MXene acting as a conductive substrate and the phosphating process can effectively tune the electronic structure and density of the electrocatalyst surface to promote the energy level of the d-band centre, resulting in an enhanced OER performance. This study provides a valuable guideline for designing high-performance MXene-supported NiFe-based OER catalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助Tsin778采纳,获得10
刚刚
科研通AI2S应助曹志伟采纳,获得10
刚刚
刚刚
赘婿应助Thinkol采纳,获得10
刚刚
1秒前
YuexYue完成签到,获得积分10
2秒前
英姑应助cckk采纳,获得10
2秒前
hkh发布了新的文献求助10
2秒前
2秒前
2秒前
VISIN发布了新的文献求助10
2秒前
doudou发布了新的文献求助10
2秒前
喜羊羊发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
LLL完成签到,获得积分10
4秒前
chr完成签到,获得积分10
4秒前
斯文败类应助sadd采纳,获得10
4秒前
赵慧完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
nico发布了新的文献求助10
4秒前
懒羊羊关注了科研通微信公众号
5秒前
牛马人发布了新的文献求助10
6秒前
6秒前
Sherlock完成签到,获得积分10
6秒前
酷波er应助徐爱琳采纳,获得10
6秒前
6秒前
小北发布了新的文献求助10
7秒前
嘉嘉完成签到,获得积分10
7秒前
PANXX完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
羊羊发布了新的文献求助10
7秒前
大气月饼发布了新的文献求助10
8秒前
流星砸地鼠完成签到 ,获得积分10
9秒前
9秒前
茹茹发布了新的文献求助10
9秒前
Bear发布了新的文献求助10
10秒前
赵慧发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667660
求助须知:如何正确求助?哪些是违规求助? 4887012
关于积分的说明 15121059
捐赠科研通 4826441
什么是DOI,文献DOI怎么找? 2584044
邀请新用户注册赠送积分活动 1538066
关于科研通互助平台的介绍 1496210