Vertically-interlaced NiFeP/MXene electrocatalyst with tunable electronic structure for high-efficiency oxygen evolution reaction

析氧 电催化剂 材料科学 氧气 氧还原反应 纳米技术 电化学 化学 电极 物理化学 有机化学
作者
Jiexin Chen,Qingwu Long,Kang Xiao,Ting Ouyang,Nan Li,Siyu Ye,Zhao‐Qing Liu
出处
期刊:Science Bulletin [Elsevier]
卷期号:66 (11): 1063-1072 被引量:333
标识
DOI:10.1016/j.scib.2021.02.033
摘要

Layered double hydroxides (LDHs) with decent oxygen evolution reaction (OER) activity have been extensively studied in the fields of energy storage and conversion. However, their poor conductivity, ease of agglomeration, and low intrinsic activity limit their practical application. To date, improvement of the intrinsic activity and stability of NiFe-LDHs through the introduction of heteroatoms or its combination with other conductive substrates to enhance their water-splitting performance has drawn increasing attention. In this study, vertically interlaced ternary phosphatised nickel/iron hybrids grown on the surface of titanium carbide flakes (NiFeP/MXene) were successfully synthesised through a hydrothermal reaction and phosphating calcination process. The optimised NiFeP/MXene exhibited a low overpotential of 286 mV at 10 mA cm−2 and a Tafel slope of 35 mV dec−1 for the OER, which exceeded the performance of several existing NiFe-based catalysts. NiFeP/MXene was further used as a water-splitting anode in an alkaline electrolyte, exhibiting a cell voltage of only 1.61 V to achieve a current density of 10 mA cm−2. Density functional theory (DFT) calculations revealed that the combination of MXene acting as a conductive substrate and the phosphating process can effectively tune the electronic structure and density of the electrocatalyst surface to promote the energy level of the d-band centre, resulting in an enhanced OER performance. This study provides a valuable guideline for designing high-performance MXene-supported NiFe-based OER catalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
勤奋的一手完成签到,获得积分10
1秒前
liyi完成签到,获得积分10
2秒前
3秒前
huajanve发布了新的文献求助10
3秒前
顾思凡发布了新的文献求助10
3秒前
Duke发布了新的文献求助10
3秒前
科研通AI6应助找文献呢采纳,获得10
4秒前
华仔应助俭朴从寒采纳,获得10
4秒前
小小小何完成签到 ,获得积分10
4秒前
Magic麦发布了新的文献求助10
4秒前
Rorea完成签到,获得积分10
4秒前
老奶奶过马路完成签到,获得积分10
4秒前
4秒前
清飞发布了新的文献求助10
4秒前
妖娆发布了新的文献求助20
4秒前
kebing完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
YTTWMU发布了新的文献求助10
5秒前
铑氟钌发少年狂完成签到 ,获得积分10
6秒前
狂野的小笼包完成签到,获得积分10
7秒前
7秒前
orixero应助鲍建芳采纳,获得10
7秒前
9秒前
JW发布了新的文献求助10
9秒前
Duke完成签到,获得积分10
10秒前
英姑应助emotional采纳,获得10
10秒前
JamesPei应助温柔嚣张采纳,获得10
10秒前
10秒前
Jared应助HUIHUI采纳,获得10
11秒前
临澈发布了新的文献求助10
12秒前
canvas完成签到,获得积分10
13秒前
herococa应助HUIHUI采纳,获得10
14秒前
14秒前
万能图书馆应助画檐蛛网采纳,获得10
15秒前
16秒前
ccc完成签到,获得积分10
16秒前
我是老大应助ZXJ采纳,获得10
16秒前
BowieHuang应助科研通管家采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648842
求助须知:如何正确求助?哪些是违规求助? 4776854
关于积分的说明 15045836
捐赠科研通 4807704
什么是DOI,文献DOI怎么找? 2571046
邀请新用户注册赠送积分活动 1527707
关于科研通互助平台的介绍 1486624