Vertically-interlaced NiFeP/MXene electrocatalyst with tunable electronic structure for high-efficiency oxygen evolution reaction

析氧 电催化剂 材料科学 氧气 氧还原反应 纳米技术 电化学 化学 电极 物理化学 有机化学
作者
Jiexin Chen,Qingwu Long,Kang Xiao,Ting Ouyang,Nan Li,Siyu Ye,Zhao‐Qing Liu
出处
期刊:Science Bulletin [Elsevier]
卷期号:66 (11): 1063-1072 被引量:333
标识
DOI:10.1016/j.scib.2021.02.033
摘要

Layered double hydroxides (LDHs) with decent oxygen evolution reaction (OER) activity have been extensively studied in the fields of energy storage and conversion. However, their poor conductivity, ease of agglomeration, and low intrinsic activity limit their practical application. To date, improvement of the intrinsic activity and stability of NiFe-LDHs through the introduction of heteroatoms or its combination with other conductive substrates to enhance their water-splitting performance has drawn increasing attention. In this study, vertically interlaced ternary phosphatised nickel/iron hybrids grown on the surface of titanium carbide flakes (NiFeP/MXene) were successfully synthesised through a hydrothermal reaction and phosphating calcination process. The optimised NiFeP/MXene exhibited a low overpotential of 286 mV at 10 mA cm−2 and a Tafel slope of 35 mV dec−1 for the OER, which exceeded the performance of several existing NiFe-based catalysts. NiFeP/MXene was further used as a water-splitting anode in an alkaline electrolyte, exhibiting a cell voltage of only 1.61 V to achieve a current density of 10 mA cm−2. Density functional theory (DFT) calculations revealed that the combination of MXene acting as a conductive substrate and the phosphating process can effectively tune the electronic structure and density of the electrocatalyst surface to promote the energy level of the d-band centre, resulting in an enhanced OER performance. This study provides a valuable guideline for designing high-performance MXene-supported NiFe-based OER catalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小城发布了新的文献求助10
刚刚
田様应助初秋采纳,获得10
刚刚
SimonShaw完成签到 ,获得积分10
1秒前
ZMR121121完成签到,获得积分10
1秒前
番fan完成签到,获得积分10
1秒前
1秒前
Verity完成签到,获得积分10
1秒前
1秒前
舒适的白开水完成签到,获得积分10
1秒前
2秒前
2秒前
染兮完成签到 ,获得积分10
2秒前
能干的雪瑶完成签到,获得积分20
2秒前
Wang0102完成签到,获得积分10
4秒前
4秒前
赵丽红发布了新的文献求助10
5秒前
zwzh发布了新的文献求助10
6秒前
来个肉盒子完成签到 ,获得积分10
7秒前
认真惜梦发布了新的文献求助10
7秒前
传奇3应助ABC采纳,获得10
7秒前
科研通AI6应助沙拉酱采纳,获得10
8秒前
8秒前
8秒前
夏芙完成签到,获得积分10
8秒前
Leo完成签到,获得积分10
9秒前
JacobWang完成签到,获得积分10
9秒前
lin完成签到,获得积分10
9秒前
飘逸的擎苍完成签到,获得积分10
9秒前
Hello应助pinecone采纳,获得10
9秒前
Orange应助冷眼观潮采纳,获得10
10秒前
张星星完成签到 ,获得积分10
11秒前
qiqiqi发布了新的文献求助10
11秒前
刘兆亮完成签到 ,获得积分10
11秒前
Lucas应助科研顺采纳,获得10
11秒前
12秒前
SciGPT应助ffcongee采纳,获得20
12秒前
小城完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642013
求助须知:如何正确求助?哪些是违规求助? 4757923
关于积分的说明 15015955
捐赠科研通 4800475
什么是DOI,文献DOI怎么找? 2566095
邀请新用户注册赠送积分活动 1524208
关于科研通互助平台的介绍 1483840