光热治疗
催化作用
化石燃料
工艺工程
材料科学
环境科学
电
化学工程
纳米技术
化学
有机化学
物理
工程类
量子力学
作者
Shenghua Wang,Athanasios A. Tountas,Wangbo Pan,Jun Zhao,Le He,Wei Sun,Deren Yang,Geoffrey A. Ozin
出处
期刊:Small
[Wiley]
日期:2021-03-08
卷期号:17 (48)
被引量:32
标识
DOI:10.1002/smll.202007025
摘要
Transformation of CO2 into value-added products via photothermal catalysis has become an increasingly popular route to help ameliorate the energy and environmental crisis derived from the continuing use of fossil fuels, as it can integrate light into well-established thermocatalysis processes. The question however remains whether negative CO2 emission could be achieved through photothermal catalytic reactions performed in facilities driven by electricity mainly derived from fossil energy. Herein, we propose universal equations that describe net CO2 emissions generated from operating thermocatalysis and photothermal reverse water-gas shift (RWGS) and Sabatier processes for batch and flow reactors. With these reactions as archetype model systems, the factors that will determine the final amount of effluent CO2 can be determined. The results of this study could provide useful guidelines for the future development of photothermal catalytic systems for CO2 reduction.
科研通智能强力驱动
Strongly Powered by AbleSci AI