Deep virtual adversarial self-training with consistency regularization for semi-supervised medical image classification

人工智能 对抗制 卷积神经网络 深度学习 半监督学习 计算机科学 正规化(语言学) 机器学习 利用 上下文图像分类 模式识别(心理学) 监督学习 图像(数学) 人工神经网络 计算机安全
作者
Xi Wang,Hao Chen,Huiling Xiang,Huangjing Lin,Xi Lin,Pheng‐Ann Heng
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:70: 102010-102010 被引量:85
标识
DOI:10.1016/j.media.2021.102010
摘要

Convolutional neural networks have achieved prominent success on a variety of medical imaging tasks when a large amount of labeled training data is available. However, the acquisition of expert annotations for medical data is usually expensive and time-consuming, which poses a great challenge for supervised learning approaches. In this work, we proposed a novel semi-supervised deep learning method, i.e., deep virtual adversarial self-training with consistency regularization, for large-scale medical image classification. To effectively exploit useful information from unlabeled data, we leverage self-training and consistency regularization to harness the underlying knowledge, which helps improve the discrimination capability of training models. More concretely, the model first uses its prediction for pseudo-labeling on the weakly-augmented input image. A pseudo-label is kept only if the corresponding class probability is of high confidence. Then the model prediction is encouraged to be consistent with the strongly-augmented version of the same input image. To improve the robustness of the network against virtual adversarial perturbed input, we incorporate virtual adversarial training (VAT) on both labeled and unlabeled data into the course of training. Hence, the network is trained by minimizing a combination of three types of losses, including a standard supervised loss on labeled data, a consistency regularization loss on unlabeled data, and a VAT loss on both labeled and labeled data. We extensively evaluate the proposed semi-supervised deep learning methods on two challenging medical image classification tasks: breast cancer screening from ultrasound images and multi-class ophthalmic disease classification from optical coherence tomography B-scan images. Experimental results demonstrate that the proposed method outperforms both supervised baseline and other state-of-the-art methods by a large margin on all tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
顾矜应助coolru采纳,获得10
1秒前
Jerry完成签到,获得积分10
2秒前
Mr.Left完成签到,获得积分10
2秒前
落后项链发布了新的文献求助10
2秒前
2秒前
威武的雪糕完成签到,获得积分10
3秒前
3秒前
4秒前
ulung完成签到 ,获得积分10
4秒前
大模型应助咩咩羊采纳,获得10
4秒前
4秒前
NexusExplorer应助王慧康采纳,获得10
5秒前
WYY发布了新的文献求助10
5秒前
qaz完成签到,获得积分10
5秒前
隐形曼青应助Jerry采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
zzzwwwkkk发布了新的文献求助10
5秒前
6秒前
XU2025发布了新的文献求助10
6秒前
清晨发布了新的文献求助10
6秒前
星光完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
犹豫若云完成签到,获得积分20
8秒前
qaz发布了新的文献求助10
8秒前
安静发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
10秒前
10秒前
10秒前
华仔应助寻觅采纳,获得10
10秒前
11秒前
liyi发布了新的文献求助30
12秒前
爱卿5271完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4602404
求助须知:如何正确求助?哪些是违规求助? 4011681
关于积分的说明 12419962
捐赠科研通 3691873
什么是DOI,文献DOI怎么找? 2035322
邀请新用户注册赠送积分活动 1068516
科研通“疑难数据库(出版商)”最低求助积分说明 953096