亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep virtual adversarial self-training with consistency regularization for semi-supervised medical image classification

人工智能 对抗制 卷积神经网络 深度学习 半监督学习 计算机科学 正规化(语言学) 机器学习 利用 上下文图像分类 模式识别(心理学) 监督学习 图像(数学) 人工神经网络 计算机安全
作者
Xi Wang,Hao Chen,Huiling Xiang,Huangjing Lin,Xi Lin,Pheng‐Ann Heng
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:70: 102010-102010 被引量:85
标识
DOI:10.1016/j.media.2021.102010
摘要

Convolutional neural networks have achieved prominent success on a variety of medical imaging tasks when a large amount of labeled training data is available. However, the acquisition of expert annotations for medical data is usually expensive and time-consuming, which poses a great challenge for supervised learning approaches. In this work, we proposed a novel semi-supervised deep learning method, i.e., deep virtual adversarial self-training with consistency regularization, for large-scale medical image classification. To effectively exploit useful information from unlabeled data, we leverage self-training and consistency regularization to harness the underlying knowledge, which helps improve the discrimination capability of training models. More concretely, the model first uses its prediction for pseudo-labeling on the weakly-augmented input image. A pseudo-label is kept only if the corresponding class probability is of high confidence. Then the model prediction is encouraged to be consistent with the strongly-augmented version of the same input image. To improve the robustness of the network against virtual adversarial perturbed input, we incorporate virtual adversarial training (VAT) on both labeled and unlabeled data into the course of training. Hence, the network is trained by minimizing a combination of three types of losses, including a standard supervised loss on labeled data, a consistency regularization loss on unlabeled data, and a VAT loss on both labeled and labeled data. We extensively evaluate the proposed semi-supervised deep learning methods on two challenging medical image classification tasks: breast cancer screening from ultrasound images and multi-class ophthalmic disease classification from optical coherence tomography B-scan images. Experimental results demonstrate that the proposed method outperforms both supervised baseline and other state-of-the-art methods by a large margin on all tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谦让山槐完成签到 ,获得积分10
5秒前
Criminology34应助ceeray23采纳,获得20
21秒前
顾矜应助越听初采纳,获得10
27秒前
39秒前
ceeray23发布了新的文献求助20
44秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
哈哈关注了科研通微信公众号
1分钟前
缥缈的觅风完成签到 ,获得积分10
2分钟前
boom完成签到 ,获得积分10
2分钟前
Zcl完成签到 ,获得积分10
2分钟前
Unicorn完成签到,获得积分10
3分钟前
哈哈发布了新的文献求助10
3分钟前
卡卡应助科研通管家采纳,获得10
3分钟前
Naming发布了新的文献求助10
3分钟前
4分钟前
深情安青应助Marciu33采纳,获得10
4分钟前
祖宛凝发布了新的文献求助10
4分钟前
renhuizhi发布了新的文献求助10
4分钟前
4分钟前
wanci应助Naming采纳,获得10
4分钟前
Forever完成签到 ,获得积分10
4分钟前
祖宛凝完成签到,获得积分10
4分钟前
木康薛完成签到,获得积分10
4分钟前
Yuki完成签到 ,获得积分10
4分钟前
木康薛发布了新的文献求助10
4分钟前
欣欣完成签到 ,获得积分10
4分钟前
4分钟前
传奇3应助碧蓝的冰绿采纳,获得10
4分钟前
renhuizhi完成签到,获得积分10
5分钟前
5分钟前
玛卡巴卡完成签到,获得积分10
5分钟前
shanyuyulai完成签到 ,获得积分10
5分钟前
6分钟前
华仔应助Sun采纳,获得10
6分钟前
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
kei完成签到 ,获得积分10
8分钟前
魔幻的芳完成签到,获得积分10
8分钟前
火星上的宝马完成签到,获得积分10
8分钟前
悲凉的忆南完成签到,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634809
求助须知:如何正确求助?哪些是违规求助? 4733916
关于积分的说明 14989314
捐赠科研通 4792506
什么是DOI,文献DOI怎么找? 2559636
邀请新用户注册赠送积分活动 1519967
关于科研通互助平台的介绍 1480053