Deep virtual adversarial self-training with consistency regularization for semi-supervised medical image classification

人工智能 对抗制 卷积神经网络 深度学习 半监督学习 计算机科学 正规化(语言学) 机器学习 利用 上下文图像分类 模式识别(心理学) 监督学习 图像(数学) 人工神经网络 计算机安全
作者
Xi Wang,Hao Chen,Huiling Xiang,Huangjing Lin,Xi Lin,Pheng‐Ann Heng
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:70: 102010-102010 被引量:85
标识
DOI:10.1016/j.media.2021.102010
摘要

Convolutional neural networks have achieved prominent success on a variety of medical imaging tasks when a large amount of labeled training data is available. However, the acquisition of expert annotations for medical data is usually expensive and time-consuming, which poses a great challenge for supervised learning approaches. In this work, we proposed a novel semi-supervised deep learning method, i.e., deep virtual adversarial self-training with consistency regularization, for large-scale medical image classification. To effectively exploit useful information from unlabeled data, we leverage self-training and consistency regularization to harness the underlying knowledge, which helps improve the discrimination capability of training models. More concretely, the model first uses its prediction for pseudo-labeling on the weakly-augmented input image. A pseudo-label is kept only if the corresponding class probability is of high confidence. Then the model prediction is encouraged to be consistent with the strongly-augmented version of the same input image. To improve the robustness of the network against virtual adversarial perturbed input, we incorporate virtual adversarial training (VAT) on both labeled and unlabeled data into the course of training. Hence, the network is trained by minimizing a combination of three types of losses, including a standard supervised loss on labeled data, a consistency regularization loss on unlabeled data, and a VAT loss on both labeled and labeled data. We extensively evaluate the proposed semi-supervised deep learning methods on two challenging medical image classification tasks: breast cancer screening from ultrasound images and multi-class ophthalmic disease classification from optical coherence tomography B-scan images. Experimental results demonstrate that the proposed method outperforms both supervised baseline and other state-of-the-art methods by a large margin on all tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AAA气囊供应商完成签到,获得积分10
1秒前
xxfsx应助辛子采纳,获得10
2秒前
独白完成签到 ,获得积分10
3秒前
神券胀得难受完成签到,获得积分10
3秒前
4秒前
852应助木子采纳,获得10
4秒前
小青年儿完成签到 ,获得积分10
4秒前
5秒前
Ing完成签到,获得积分10
7秒前
智守奇安完成签到,获得积分10
8秒前
9秒前
田様应助东白湖的无奈采纳,获得10
9秒前
科研通AI6应助ding采纳,获得10
9秒前
大七发布了新的文献求助10
10秒前
研友_Z6Gm58完成签到 ,获得积分10
10秒前
追寻绮玉发布了新的文献求助10
10秒前
huihui完成签到 ,获得积分10
11秒前
11秒前
脑洞疼应助周周采纳,获得20
12秒前
大个应助周周采纳,获得20
12秒前
爆米花应助周周采纳,获得20
12秒前
共享精神应助周周采纳,获得20
12秒前
JamesPei应助周周采纳,获得20
13秒前
斯文败类应助周周采纳,获得20
13秒前
赘婿应助周周采纳,获得20
13秒前
Fsy应助周周采纳,获得30
13秒前
Gellisa应助周周采纳,获得20
13秒前
慕青应助周周采纳,获得20
13秒前
14秒前
14秒前
王柯完成签到 ,获得积分10
14秒前
15秒前
16秒前
小二郎应助木子采纳,获得10
17秒前
17秒前
板栗发布了新的文献求助10
18秒前
Nicole发布了新的文献求助10
19秒前
19秒前
jason0023发布了新的文献求助10
19秒前
凡华完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5271518
求助须知:如何正确求助?哪些是违规求助? 4429192
关于积分的说明 13787815
捐赠科研通 4307460
什么是DOI,文献DOI怎么找? 2363567
邀请新用户注册赠送积分活动 1359231
关于科研通互助平台的介绍 1322167