已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep virtual adversarial self-training with consistency regularization for semi-supervised medical image classification

人工智能 对抗制 卷积神经网络 深度学习 半监督学习 计算机科学 正规化(语言学) 机器学习 利用 上下文图像分类 模式识别(心理学) 监督学习 图像(数学) 人工神经网络 计算机安全
作者
Xi Wang,Hao Chen,Huiling Xiang,Huangjing Lin,Xi Lin,Pheng‐Ann Heng
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:70: 102010-102010 被引量:85
标识
DOI:10.1016/j.media.2021.102010
摘要

Convolutional neural networks have achieved prominent success on a variety of medical imaging tasks when a large amount of labeled training data is available. However, the acquisition of expert annotations for medical data is usually expensive and time-consuming, which poses a great challenge for supervised learning approaches. In this work, we proposed a novel semi-supervised deep learning method, i.e., deep virtual adversarial self-training with consistency regularization, for large-scale medical image classification. To effectively exploit useful information from unlabeled data, we leverage self-training and consistency regularization to harness the underlying knowledge, which helps improve the discrimination capability of training models. More concretely, the model first uses its prediction for pseudo-labeling on the weakly-augmented input image. A pseudo-label is kept only if the corresponding class probability is of high confidence. Then the model prediction is encouraged to be consistent with the strongly-augmented version of the same input image. To improve the robustness of the network against virtual adversarial perturbed input, we incorporate virtual adversarial training (VAT) on both labeled and unlabeled data into the course of training. Hence, the network is trained by minimizing a combination of three types of losses, including a standard supervised loss on labeled data, a consistency regularization loss on unlabeled data, and a VAT loss on both labeled and labeled data. We extensively evaluate the proposed semi-supervised deep learning methods on two challenging medical image classification tasks: breast cancer screening from ultrasound images and multi-class ophthalmic disease classification from optical coherence tomography B-scan images. Experimental results demonstrate that the proposed method outperforms both supervised baseline and other state-of-the-art methods by a large margin on all tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
1秒前
栖枝完成签到 ,获得积分10
3秒前
4秒前
山楂发布了新的文献求助10
7秒前
cc发布了新的文献求助10
8秒前
Wish完成签到,获得积分10
9秒前
草莓熊1215完成签到 ,获得积分10
12秒前
在水一方应助糖果屋采纳,获得10
13秒前
15秒前
含蓄的易文完成签到,获得积分10
17秒前
不能随便完成签到,获得积分10
18秒前
上官若男应助光亮翠风采纳,获得10
18秒前
深情安青应助优美紫槐采纳,获得10
19秒前
能干的阿拉蕾完成签到 ,获得积分10
19秒前
Echo发布了新的文献求助10
19秒前
华仔应助wzk采纳,获得10
20秒前
乔治韦斯莱完成签到 ,获得积分10
20秒前
bosslin完成签到,获得积分10
22秒前
旺仔先生完成签到 ,获得积分10
22秒前
25秒前
26秒前
struggling2026完成签到 ,获得积分10
28秒前
29秒前
小哈完成签到,获得积分10
30秒前
满意妙梦发布了新的文献求助10
30秒前
32秒前
小哈发布了新的文献求助20
33秒前
bosslin发布了新的文献求助10
34秒前
坚强紫山发布了新的文献求助10
37秒前
WY完成签到 ,获得积分10
38秒前
yuanyuan发布了新的文献求助10
40秒前
41秒前
44秒前
情怀应助科研通管家采纳,获得10
46秒前
BowieHuang应助科研通管家采纳,获得10
46秒前
慕青应助科研通管家采纳,获得10
46秒前
ceeray23应助科研通管家采纳,获得10
46秒前
BowieHuang应助科研通管家采纳,获得10
47秒前
GC发布了新的文献求助30
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599628
求助须知:如何正确求助?哪些是违规求助? 4685351
关于积分的说明 14838385
捐赠科研通 4669488
什么是DOI,文献DOI怎么找? 2538128
邀请新用户注册赠送积分活动 1505503
关于科研通互助平台的介绍 1470898