Deep virtual adversarial self-training with consistency regularization for semi-supervised medical image classification

人工智能 对抗制 计算机科学 正规化(语言学) 一致性(知识库) 机器学习 培训(气象学) 上下文图像分类 模式识别(心理学) 图像(数学) 计算机视觉 数学 地理 气象学
作者
Xi Wang,Hao Chen,Huiling Xiang,Huangjing Lin,Xi Lin,Pheng‐Ann Heng
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:70: 102010-102010 被引量:46
标识
DOI:10.1016/j.media.2021.102010
摘要

Convolutional neural networks have achieved prominent success on a variety of medical imaging tasks when a large amount of labeled training data is available. However, the acquisition of expert annotations for medical data is usually expensive and time-consuming, which poses a great challenge for supervised learning approaches. In this work, we proposed a novel semi-supervised deep learning method, i.e., deep virtual adversarial self-training with consistency regularization, for large-scale medical image classification. To effectively exploit useful information from unlabeled data, we leverage self-training and consistency regularization to harness the underlying knowledge, which helps improve the discrimination capability of training models. More concretely, the model first uses its prediction for pseudo-labeling on the weakly-augmented input image. A pseudo-label is kept only if the corresponding class probability is of high confidence. Then the model prediction is encouraged to be consistent with the strongly-augmented version of the same input image. To improve the robustness of the network against virtual adversarial perturbed input, we incorporate virtual adversarial training (VAT) on both labeled and unlabeled data into the course of training. Hence, the network is trained by minimizing a combination of three types of losses, including a standard supervised loss on labeled data, a consistency regularization loss on unlabeled data, and a VAT loss on both labeled and labeled data. We extensively evaluate the proposed semi-supervised deep learning methods on two challenging medical image classification tasks: breast cancer screening from ultrasound images and multi-class ophthalmic disease classification from optical coherence tomography B-scan images. Experimental results demonstrate that the proposed method outperforms both supervised baseline and other state-of-the-art methods by a large margin on all tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赵珊发布了新的文献求助10
刚刚
刚刚
1秒前
windli发布了新的文献求助10
1秒前
JXY发布了新的文献求助10
2秒前
2秒前
yaoccccchen完成签到,获得积分10
3秒前
3秒前
尊敬的金针菇完成签到,获得积分10
4秒前
张小桐完成签到,获得积分10
4秒前
云_123发布了新的文献求助10
4秒前
5秒前
粗暴的君浩完成签到,获得积分10
5秒前
5秒前
孳孳为善6387完成签到,获得积分10
5秒前
安琪关注了科研通微信公众号
6秒前
7秒前
苦哈哈发布了新的文献求助10
7秒前
8秒前
赵珊完成签到,获得积分10
9秒前
an发布了新的文献求助10
11秒前
11秒前
刘艺娜发布了新的文献求助10
11秒前
11秒前
12秒前
FB发布了新的文献求助10
12秒前
健康的延恶完成签到,获得积分10
12秒前
白了个白完成签到 ,获得积分10
12秒前
lixiao应助mmol采纳,获得10
13秒前
跳跳骑士发布了新的文献求助10
13秒前
13秒前
sumei发布了新的文献求助10
13秒前
13秒前
lsp完成签到,获得积分10
14秒前
Ey完成签到,获得积分10
14秒前
宇文书翠发布了新的文献求助10
15秒前
Denmark发布了新的文献求助30
15秒前
15秒前
15秒前
难过酸奶完成签到,获得积分10
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135387
求助须知:如何正确求助?哪些是违规求助? 2786384
关于积分的说明 7777028
捐赠科研通 2442291
什么是DOI,文献DOI怎么找? 1298501
科研通“疑难数据库(出版商)”最低求助积分说明 625124
版权声明 600847