A hybrid prognostic method based on gated recurrent unit network and an adaptive Wiener process model considering measurement errors

过程(计算) 计算机科学 单位(环理论) 维纳过程 控制理论(社会学) 数学 人工智能 统计 操作系统 数学教育 控制(管理)
作者
Zhe Chen,Tangbin Xia,Yanting Li,Ershun Pan
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:158: 107785-107785 被引量:55
标识
DOI:10.1016/j.ymssp.2021.107785
摘要

• A hybrid prognostic framework consisting of GRU and Wiener process is proposed. • The adaptive Wiener process model considers four variability sources. • Both the available measurements and predicted observations by GRU are utilized. • A Kalman filtering algorithm is developed for updating machinery state. • The exponentially weighted average is used to account for the drift adaptivity. Remaining useful life (RUL) prediction is fundamental to prognostics and health management (PHM). Considering the advantages of both model-based and data-driven prognostic approaches, this paper develops a hybrid prognostic method for machinery degradation. First, a 3σ criterion-based algorithm is introduced to detect the initial timepoint of degradation. Second, gated recurrent unit (GRU) network is utilized to learn the degradation characteristics based on the available data and thereby predict the long-term degradation trend by a multi-prediction procedure. Then, an adaptive Wiener process model considering measurement errors is constructed. The states of this model consisting of the drift rate and the underlying degradation value are updated adaptively based on the monitored observations and the predictions by GRU using a Kalman filtering algorithm. The predicted values of the RUL can be determined according to the underlying degradation and the failure threshold. Finally, to account for the drift adaptivity in the future degradation, exponentially weighted average method is adopted to aggregate the estimated drift sequence from the current time until failure for the derivation of real-time RUL distributions. The effectiveness and superiority are illustrated by a simulation study and an application to rolling element bearings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
无奈傲菡完成签到,获得积分10
2秒前
科研菜鸟发布了新的文献求助10
3秒前
YJY发布了新的文献求助10
3秒前
我爱科研发布了新的文献求助10
4秒前
李东洋完成签到,获得积分10
6秒前
7秒前
10秒前
共产主义战士完成签到,获得积分10
12秒前
thisky完成签到,获得积分10
14秒前
xiaozang完成签到,获得积分10
16秒前
qinghuixinyi发布了新的文献求助10
16秒前
17秒前
18秒前
18秒前
xcxc发布了新的文献求助10
21秒前
寒冷荧荧应助fifteen采纳,获得10
22秒前
galaxy完成签到 ,获得积分10
22秒前
青尘枫叶完成签到,获得积分10
22秒前
大豆发布了新的文献求助10
23秒前
DH完成签到 ,获得积分10
23秒前
25秒前
25秒前
田様应助海阔天空采纳,获得10
26秒前
kingwhitewing发布了新的文献求助50
26秒前
27秒前
27秒前
优雅小兔子完成签到,获得积分20
28秒前
丘比特应助PhDshi采纳,获得10
29秒前
彭于彦祖应助cheercalm采纳,获得20
30秒前
nian应助xcxc采纳,获得10
30秒前
wanci应助忐忑的老虎采纳,获得10
31秒前
诸觅双发布了新的文献求助10
31秒前
李东洋发布了新的文献求助10
31秒前
韭菜盒子发布了新的文献求助10
33秒前
Renee应助超帅凡阳采纳,获得10
34秒前
34秒前
机器猫发布了新的文献求助10
35秒前
xh发布了新的文献求助10
36秒前
希望天下0贩的0应助YJY采纳,获得10
37秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160952
求助须知:如何正确求助?哪些是违规求助? 2812175
关于积分的说明 7894698
捐赠科研通 2471057
什么是DOI,文献DOI怎么找? 1315853
科研通“疑难数据库(出版商)”最低求助积分说明 631036
版权声明 602068