阳极
阴极
电池(电)
材料科学
重新使用
电化学
石墨
储能
锂离子电池
化学工程
离子
电极
纳米技术
废物管理
化学
冶金
工程类
物理化学
功率(物理)
有机化学
物理
量子力学
作者
Yun‐Feng Meng,Haojie Liang,Chen‐De Zhao,Wenhao Li,Zhen‐Yi Gu,Mengxuan Yu,Bo Zhao,Xian‐Kun Hou,Xing‐Long Wu
标识
DOI:10.1016/j.jechem.2021.04.047
摘要
With the increasing popularity of new energy electric vehicles, the demand for lithium-ion batteries (LIBs) has been growing rapidly, which will produce a large number of spent LIBs. Therefore, recycling of spent LIBs has become an urgent task to be solved, otherwise it will inevitably lead to serious environmental pollution. Herein, a unique recycling strategy is proposed to achieve the concurrent reuse of cathode and anode in the spent graphite/LiFePO4 batteries. Along with such recycling process, a unique cathode composed of recycled LFP/graphite (RLFPG) with cation/anion-co-storage ability is designed for new-type dual-ion battery (DIB). As a result, the recycle-derived DIB of Li/RLFPG is established with good electrochemical performance, such as an initial discharge capacity of 117.4 mA h g−1 at 25 mA g−1 and 78% capacity retention after 1000 cycles at 100 mA g−1. The working mechanism of Li/RLFPG DIB is also revealed via in situ X-ray diffraction and electrode kinetics studies. This work not only presents a far-reaching significance for large-scale recycling of spent LIBs in the future, but also proposed a sustainable and economical method to design new-type secondary batteries as recycling of spent LIBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI