Heart rate variability enhances the accuracy of non-invasive continuous blood pressure estimation under blood loss

血压 心率变异性 均方误差 心率 舒张期 估计理论 相关性 医学 数学 心脏病学 统计 计算机科学 内科学 几何学
作者
Zhang Guang,Zongge Wang,Feixiang Hou,Zongming Wan,Feng Chen,Ming Yu,Jinhai Wang,Huiquan Wang
出处
期刊:Review of Scientific Instruments [American Institute of Physics]
卷期号:92 (10) 被引量:5
标识
DOI:10.1063/5.0037661
摘要

To propose a new method for real-time monitoring of blood pressure of blood loss (BPBL), this article combines pulse transit time (PTT) and heart rate variability (HRV) as input parameters to build a model for BPBL estimation. In this article, effective parameters such as PTT, R-R interval (RRI), and HRV were extracted and used to establish the blood pressure (BP) estimation. Three BP estimation models were created: the PTT model, the RRI model, and the HRV model, and they were divided into an experimental group and a control group. Finally, the effects of the different estimation models on the accuracy of BPBL were evaluated using the experimental results. The result showed that both the RRI model and the HRV model have a good improvement effect on the prediction accuracy of BPBL, and the HRV model has the highest prediction accuracy than the PTT model and the RRI model. The correlation coefficients between the actual systolic BP (SBP) and diastolic BP (DBP) and the estimated SBP and DBP of the HRV model were 0.9580 and 0.9749, respectively, and the root-mean-square error of the HRV model for both SBP and DBP were 7.59 and 6.56 mmHg, respectively. The results suggest that the accuracy of the BPBL estimated by the HRV models is better than that of the PTT model, which means that HRV seems to be more effective in improving the accuracy of BP estimation compared with RRI. These results in this article provide a new idea for other researchers in the field of BPBL estimation research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HEIKU应助yangyangyang采纳,获得10
刚刚
Esfuerzo完成签到,获得积分10
刚刚
科研通AI5应助安静的安寒采纳,获得10
1秒前
吃鸡蛋不吃鸡蛋黄完成签到,获得积分10
1秒前
royan2完成签到,获得积分10
1秒前
阿勒泰完成签到,获得积分10
1秒前
小于爱科研完成签到,获得积分10
1秒前
1秒前
zkc完成签到,获得积分10
1秒前
1秒前
luo发布了新的文献求助30
1秒前
雾蓝发布了新的文献求助10
1秒前
2秒前
zhang发布了新的文献求助10
2秒前
佳佳发布了新的文献求助10
3秒前
royan2发布了新的文献求助10
3秒前
3秒前
zkc发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
沐沐君完成签到,获得积分10
4秒前
nancyzhy完成签到,获得积分10
4秒前
当时明月在完成签到,获得积分0
4秒前
共享精神应助无情念之采纳,获得10
5秒前
zhenzhen发布了新的文献求助10
5秒前
韭黄发布了新的文献求助10
5秒前
5秒前
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
852应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
5秒前
英姑应助科研通管家采纳,获得10
5秒前
maox1aoxin应助科研通管家采纳,获得30
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
激昂的幻梦完成签到,获得积分10
6秒前
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759