Controlling the dynamics of the plasmonic field in the nano-femtosecond scale by chirped femtosecond laser pulse

飞秒 材料科学 啁啾声 激光器 超短脉冲 物理 电磁场 光学 等离子体子 光电子学 领域(数学) 数学 量子力学 纯数学
作者
Hanbing Song,Peng Lang,Boyu Ji,Xiaowei Song,Jingquan Lin
出处
期刊:Optical Materials Express [Optica Publishing Group]
卷期号:11 (9): 2817-2817 被引量:8
标识
DOI:10.1364/ome.433442
摘要

Arbitrary control of the electromagnetic field in femto-nano scale has attracted significant research attention in nano-photonics. Although the electromagnetic field controlled in femto-nano scale could be realized by illuminating metallic nanoparticles with femtosecond chirped laser pulses, the quantitative relation of the laser chirp and the temporal evolution of the plasmonic field hasn’t yet been fully revealed. Here, active control of the localized plasmonic field is demonstrated by a chirped femtosecond laser pulse in an asymmetric Au nano-cross system within nm-fs scale using the finite differential time domain method. The transferring of the plasmonic field between the two poles of the nanocross is determined by the laser chirp and exhibits linear dependence on the time interval between the corresponding plasmonic resonant frequencies dispersed in the chirped laser pulse. The arrival time and amplitude of the peak field from the plasmonic hot spot are determined by the superposition of the induced field excited by the on-resonant and off-resonant frequency components distributed in the chirped laser pulse. The peak field would arrive behind the resonant frequency component for sufficient oscillation of the localized field. This relative delay between the resonant frequency and field peak is influenced by the temporal distribution of the resonant frequency in the chirped pulse and the response of localized field interpreted by the damped harmonic oscillator model. This result demonstrates that larger near-field enhancement is determined by not only the temporal sequence of the frequency component modulated by chirp but also the temporal distribution of the resonant frequency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助zyy采纳,获得10
1秒前
1秒前
1秒前
zjx完成签到,获得积分10
1秒前
慕青应助哭泣时光采纳,获得10
2秒前
2秒前
Viviiviii发布了新的文献求助10
2秒前
受伤邴完成签到 ,获得积分10
3秒前
4秒前
小五完成签到 ,获得积分10
4秒前
lv发布了新的文献求助10
4秒前
4秒前
一一完成签到 ,获得积分10
6秒前
llllhh发布了新的文献求助10
6秒前
王来敏完成签到,获得积分10
6秒前
6秒前
许愿非树完成签到,获得积分10
6秒前
FashionBoy应助健康的语芙采纳,获得10
6秒前
FashionBoy应助stupid采纳,获得10
7秒前
科研通AI5应助回笼觉教主采纳,获得10
7秒前
yyymmma发布了新的文献求助10
7秒前
yzl发布了新的文献求助10
8秒前
hyr完成签到 ,获得积分10
8秒前
种花兔发布了新的文献求助10
8秒前
8秒前
9秒前
zhao发布了新的文献求助10
9秒前
shhoing应助cc采纳,获得50
9秒前
缓慢海亦发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
12秒前
万能图书馆应助lw采纳,获得10
12秒前
14秒前
14秒前
stupid发布了新的文献求助10
15秒前
mayday完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
万能图书馆应助GJL采纳,获得10
17秒前
hyh完成签到,获得积分10
17秒前
Viviiviii完成签到,获得积分10
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662822
求助须知:如何正确求助?哪些是违规求助? 3223668
关于积分的说明 9752507
捐赠科研通 2933578
什么是DOI,文献DOI怎么找? 1606153
邀请新用户注册赠送积分活动 758307
科研通“疑难数据库(出版商)”最低求助积分说明 734771