清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Using knowledge Graphs to Enhance the Interpretability of Clinical Decision Support Model

可解释性 计算机科学 决策支持系统 人工智能 机器学习 理论计算机科学 知识管理
作者
Huang Jin-ming,Liang Xiao,Junyi Yang,SiMing Chen
标识
DOI:10.1109/iccsmt51754.2020.00030
摘要

Current clinical practice relies heavily on technology to support decision-making. In particular, machine learning is increasingly used in decision support systems. This can be attributed to information overload, a fact that clinicians cannot consider all available information. The disadvantage of this method is that this kind of Clinical Decision Support Systems (CDSSs) is usually a black box, and it can't understand its decision-making reasons. However, in a healthcare environment, trust and accountability are important issues, and such systems should best be interpretable. In contrast, other areas rely almost entirely on observational or subjective patient reported questionnaires to quantify medical conditions. Developers need to use cognitive science based Human-Computer Interaction (HCI) research methods to design practice models, including user-centered iterative design and common standards. The main work of this paper is to propose a clinical decision support model with enhanced interpretability, including an automated interface generation engine. In the design of personalized decision-making, enhance the universality of decision-making push. The clinical evidence is input and displayed in the form of tables, and the medical concepts and their matching with SNOMED CT terms, consistent navigation, and finally displayed in the form of knowledge spectrum. Enhance the flexibility of interaction and integrate workflow seamlessly. As a result, domain experts can get advice quickly and take appropriate actions at convenient points in the workflow without additional effort or delay. Optimizing the interaction and availability of CDSS with providers can enhance the use of CDSS. The iterative design of CDSS improves the usability of the system and the user's popularity score. Our analysis shows that modern machine learning methods can provide interpretability compatible with domain Interpretation Knowledge Base (IKB) and traditional method ranking. Future work should focus on replicating these findings in other datasets and further testing different interpretable methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
creep2020完成签到,获得积分10
36秒前
1分钟前
SUN完成签到,获得积分0
1分钟前
1分钟前
MJMarker发布了新的文献求助10
1分钟前
herpes完成签到 ,获得积分10
1分钟前
vbnn完成签到 ,获得积分10
2分钟前
Zeeki完成签到 ,获得积分10
2分钟前
mf2002mf完成签到 ,获得积分10
2分钟前
Sunny完成签到,获得积分10
3分钟前
红箭烟雨完成签到,获得积分10
3分钟前
波西米亚完成签到,获得积分10
3分钟前
以行践言应助xinran采纳,获得10
5分钟前
jason完成签到 ,获得积分10
5分钟前
龙猫爱看书完成签到,获得积分10
5分钟前
星星发布了新的文献求助10
6分钟前
KinKrit完成签到 ,获得积分10
6分钟前
zhangguo完成签到 ,获得积分10
6分钟前
搜集达人应助YUYU采纳,获得10
6分钟前
FashionBoy应助星星采纳,获得10
6分钟前
无名完成签到 ,获得积分10
6分钟前
woxinyouyou完成签到,获得积分0
7分钟前
YZ完成签到 ,获得积分10
7分钟前
7分钟前
YUYU发布了新的文献求助10
7分钟前
慕青应助YUYU采纳,获得10
7分钟前
xinran完成签到,获得积分10
7分钟前
共享精神应助ceeray23采纳,获得20
8分钟前
曾经不言完成签到 ,获得积分10
8分钟前
8分钟前
8分钟前
ceeray23发布了新的文献求助20
8分钟前
非洲大象发布了新的文献求助200
9分钟前
凶狠的盛男完成签到 ,获得积分10
9分钟前
zxy完成签到,获得积分10
9分钟前
迅速灵竹完成签到 ,获得积分10
9分钟前
煜琪完成签到 ,获得积分10
9分钟前
非洲大象发布了新的文献求助200
11分钟前
刘刘完成签到 ,获得积分10
11分钟前
nuliguan完成签到 ,获得积分10
11分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
The King's Magnates: A Study of the Highest Officials of the Neo-Assyrian Empire 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3539066
求助须知:如何正确求助?哪些是违规求助? 3116670
关于积分的说明 9326530
捐赠科研通 2814659
什么是DOI,文献DOI怎么找? 1547002
邀请新用户注册赠送积分活动 720695
科研通“疑难数据库(出版商)”最低求助积分说明 712192