土壤水分
环境科学
土壤碳
农学
水田
湿地
固碳
土壤有机质
有机质
总有机碳
生态学
土壤科学
二氧化碳
环境化学
化学
生物
作者
Xiangbi Chen,Yajun Hu,Yinhang Xia,Shengmeng Zheng,Chong Ma,Yichao Rui,Hongbo He,Daoyou Huang,Zhenhua Zhang,Tida Ge,Jinshui Wu,Georg Guggenberger,Yakov Kuzyakov,Yirong Su
摘要
Paddy soils make up the largest anthropogenic wetlands on earth, and are characterized by a prominent potential for organic carbon (C) sequestration. By quantifying the plant- and microbial-derived C in soils across four climate zones, we identified that organic C accrual is achieved via contrasting pathways in paddy and upland soils. Paddies are 39%-127% more efficient in soil organic C (SOC) sequestration than their adjacent upland counterparts, with greater differences in warmer than cooler climates. Upland soils are more replenished by microbial-derived C, whereas paddy soils are enriched with a greater proportion of plant-derived C, because of the retarded microbial decomposition under anaerobic conditions induced by the flooding of paddies. Under both land-use types, the maximal contribution of plant residues to SOC is at intermediate mean annual temperature (15-20°C), neutral soil (pH~7.3), and low clay/sand ratio. By contrast, high temperature (~24°C), low soil pH (~5), and large clay/sand ratio are favorable for strengthening the contribution of microbial necromass. The greater contribution of microbial necromass to SOC in waterlogged paddies in warmer climates is likely due to the fast anabolism from bacteria, whereas fungi are unlikely to be involved as they are aerobic. In the scenario of land-use conversion from paddy to upland, a total of 504 Tg C may be lost as CO
科研通智能强力驱动
Strongly Powered by AbleSci AI