Challenges in simulating and modeling the airborne virus transmission: A state-of-the-art review

传输(电信) 空中传输 物理 2019年冠状病毒病(COVID-19) 计算机科学 计算机模拟 统计物理学 模拟 航空航天工程 机械 医学 电信 工程类 病理 传染病(医学专业) 疾病
作者
Farzad Pourfattah,Lian‐Ping Wang,Weiwei Deng,Yong‐Feng Ma,Liangquan Hu,Bo Yang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:33 (10) 被引量:34
标识
DOI:10.1063/5.0061469
摘要

Recently, the COVID-19 virus pandemic has led to many studies on the airborne transmission of expiratory droplets. While limited experiments and on-site measurements offer qualitative indication of potential virus spread rates and the level of transmission risk, the quantitative understanding and mechanistic insights also indispensably come from careful theoretical modeling and numerical simulation efforts around which a surge of research papers has emerged. However, due to the highly interdisciplinary nature of the topic, numerical simulations of the airborne spread of expiratory droplets face serious challenges. It is essential to examine the assumptions and simplifications made in the existing modeling and simulations, which will be reviewed carefully here to better advance the fidelity of numerical results when compared to the reality. So far, existing review papers have focused on discussing the simulation results without questioning or comparing the model assumptions. This review paper focuses instead on the details of the model simplifications used in the numerical methods and how to properly incorporate important processes associated with respiratory droplet transmission. Specifically, the critical issues reviewed here include modeling of the respiratory droplet evaporation, droplet size distribution, and time-dependent velocity profile of air exhaled from coughing and sneezing. According to the literature review, another problem in numerical simulations is that the virus decay rate and suspended viable viral dose are often not incorporated; therefore here, empirical relationships for the bioactivity of coronavirus are presented. It is hoped that this paper can assist researchers to significantly improve their model fidelity when simulating respiratory droplet transmission.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
紫金大萝卜完成签到,获得积分0
1秒前
1秒前
2秒前
guozi完成签到,获得积分10
2秒前
2秒前
yang完成签到,获得积分10
3秒前
天真的千柔完成签到,获得积分20
4秒前
Orion完成签到,获得积分10
4秒前
4秒前
Pufferfish发布了新的文献求助10
4秒前
5秒前
慕青应助谷歌采纳,获得10
5秒前
5秒前
Owen应助Michael_li采纳,获得10
5秒前
7秒前
7秒前
小太阳发布了新的文献求助10
8秒前
yingying完成签到,获得积分10
8秒前
亵渎完成签到,获得积分10
8秒前
寄凡发布了新的文献求助10
8秒前
哒哒哒完成签到 ,获得积分10
8秒前
9秒前
boniu完成签到,获得积分10
9秒前
自觉士萧发布了新的文献求助10
9秒前
10秒前
思源应助紫金大萝卜采纳,获得50
11秒前
Pufferfish完成签到,获得积分10
11秒前
11秒前
12秒前
刘宇发布了新的文献求助10
13秒前
外向含烟完成签到,获得积分10
13秒前
13秒前
Akim应助整齐万宝路采纳,获得10
14秒前
Wei完成签到 ,获得积分10
14秒前
15秒前
15秒前
16秒前
传奇3应助夭灼采纳,获得10
16秒前
16秒前
英勇小霸王完成签到,获得积分10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3563810
求助须知:如何正确求助?哪些是违规求助? 3137001
关于积分的说明 9420496
捐赠科研通 2837441
什么是DOI,文献DOI怎么找? 1559833
邀请新用户注册赠送积分活动 729198
科研通“疑难数据库(出版商)”最低求助积分说明 717171