From demand forecasting to inventory ordering decisions for red blood cells through integrating machine learning, statistical modeling, and inventory optimization

需求预测 运筹学 计算机科学 人工智能 工程类
作者
Na Li,Donald M. Arnold,Douglas G. Down,Rebecca Barty,John T. Blake,Fei Chiang,Tom Courtney,Marianne Waito,Rick Trifunov,Nancy M. Heddle
出处
期刊:Transfusion [Wiley]
卷期号:62 (1): 87-99 被引量:23
标识
DOI:10.1111/trf.16739
摘要

The demand and supply of blood are highly variable over time. Blood inventory management that relies heavily on experience-based decisions may not be adaptive to real demand, leading to high operational costs, wastage, and shortages.We combined statistical modeling, machine learning, and optimization methods to develop a data-driven demand forecasting and inventory management strategy for red blood cells (RBCs). We then used the strategy to inform daily blood orders. A secondary semi-weekly (twice per week) ordering strategy was developed to handle the last-mile split delivery problem for blood suppliers, characterized by multi-deliveries to the same location multiple times during a short period of time. Both strategies were evaluated using the TRUST database including all patient data across four hospitals in Hamilton, Ontario.We identified 227,944 RBC transfusions for 40,787 patients in Hamilton, Ontario from 2012 to 2018. The predicted daily demand from the hybrid demand forecasting model was not significantly different from the actual daily demand (paired t-test p-value = 0.163); however, the proposed daily ordering quantity from the model was significantly lower than the actual ordering quantity (p-value <0.001). The proposed daily ordering strategy reduced inventory levels by 38.4% without risk of shortages, leading to an overall cost reduction of 43.0% (95% confidence interval [CI]: 42.3%, 43.7%) compared with the actual cost. The semi-weekly ordering strategy reduced ordering frequency by 62.6% (95% CI: 61.5%, 63.7%).The proposed data-driven ordering strategy combining demand forecasting and inventory optimization can achieve significant cost savings for healthcare systems and blood suppliers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助科研通管家采纳,获得10
刚刚
刚刚
无花果应助科研通管家采纳,获得30
刚刚
李某某应助数学情缘采纳,获得10
刚刚
烟花应助科研通管家采纳,获得10
刚刚
所所应助科研通管家采纳,获得10
刚刚
隐形曼青应助科研通管家采纳,获得10
刚刚
科目三应助科研通管家采纳,获得10
刚刚
大模型应助科研通管家采纳,获得10
刚刚
慕青应助科研通管家采纳,获得10
刚刚
完美世界应助科研通管家采纳,获得10
刚刚
saluo完成签到,获得积分10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
tree完成签到,获得积分10
刚刚
爆米花应助科研通管家采纳,获得10
刚刚
田様应助科研通管家采纳,获得10
刚刚
在水一方应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得30
1秒前
Cactus应助科研通管家采纳,获得10
1秒前
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
1秒前
晨心完成签到,获得积分10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
2秒前
jsdk发布了新的文献求助20
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
ANNY发布了新的文献求助10
2秒前
贝奥兰迪发布了新的文献求助10
2秒前
2秒前
Dailalala完成签到,获得积分10
2秒前
zzz完成签到,获得积分10
3秒前
3秒前
sunny完成签到 ,获得积分10
3秒前
顾矜应助壮观以松采纳,获得10
3秒前
童0731完成签到,获得积分10
3秒前
闻元杰发布了新的文献求助10
3秒前
杨st发布了新的文献求助10
4秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
Not Equal : Towards an International Law of Finance 260
Dynamics in Chinese Digital Commons: Law, Technology, and Governance 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3725848
求助须知:如何正确求助?哪些是违规求助? 3270880
关于积分的说明 9969512
捐赠科研通 2986307
什么是DOI,文献DOI怎么找? 1638161
邀请新用户注册赠送积分活动 777987
科研通“疑难数据库(出版商)”最低求助积分说明 747365