SSSIC: Semantics-to-Signal Scalable Image Coding With Learned Structural Representations

计算机科学 比特流 图像压缩 计算机视觉 人工智能 数据压缩 图像分割 分割 模式识别(心理学) 算法 解码方法 图像处理 图像(数学)
作者
Ning Yan,Changsheng Gao,Dong Liu,Houqiang Li,Li Li,Feng Wu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 8939-8954 被引量:20
标识
DOI:10.1109/tip.2021.3121131
摘要

We address the requirement of image coding for joint human-machine vision, i.e., the decoded image serves both human observation and machine analysis/understanding. Previously, human vision and machine vision have been extensively studied by image (signal) compression and (image) feature compression, respectively. Recently, for joint human-machine vision, several studies have been devoted to joint compression of images and features, but the correlation between images and features is still unclear. We identify the deep network as a powerful toolkit for generating structural image representations. From the perspective of information theory, the deep features of an image naturally form an entropy decreasing series: a scalable bitstream is achieved by compressing the features backward from a deeper layer to a shallower layer until culminating with the image signal. Moreover, we can obtain learned representations by training the deep network for a given semantic analysis task or multiple tasks and acquire deep features that are related to semantics. With the learned structural representations, we propose SSSIC, a framework to obtain an embedded bitstream that can be either partially decoded for semantic analysis or fully decoded for human vision. We implement an exemplar SSSIC scheme using coarse-to-fine image classification as the driven semantic analysis task. We also extend the scheme for object detection and instance segmentation tasks. The experimental results demonstrate the effectiveness of the proposed SSSIC framework and establish that the exemplar scheme achieves higher compression efficiency than separate compression of images and features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张佳浩发布了新的文献求助10
1秒前
Jane发布了新的文献求助10
1秒前
1秒前
RossYang发布了新的文献求助10
1秒前
1秒前
活力的双双完成签到,获得积分10
2秒前
2秒前
yehhh完成签到,获得积分10
2秒前
玿琤完成签到,获得积分10
3秒前
FY发布了新的文献求助10
3秒前
cxx关闭了cxx文献求助
3秒前
3秒前
哈哈哈哈哈完成签到,获得积分10
3秒前
orixero应助cqy采纳,获得10
4秒前
小小的梦想完成签到,获得积分10
4秒前
Orange应助西番雅采纳,获得10
5秒前
张大猫完成签到,获得积分10
5秒前
读懂文献就像喝水完成签到 ,获得积分10
5秒前
cocolu应助hhh采纳,获得10
6秒前
7秒前
8秒前
8秒前
呆瓜发布了新的文献求助10
8秒前
wanci应助科研小白采纳,获得10
8秒前
烟花应助西红柿爱吃番茄采纳,获得10
9秒前
yangteng发布了新的文献求助10
9秒前
9秒前
zhanghuiwang完成签到,获得积分10
10秒前
10秒前
FY完成签到,获得积分10
10秒前
lu完成签到,获得积分10
10秒前
图图不秃发布了新的文献求助10
10秒前
SoniaChan完成签到,获得积分10
11秒前
11秒前
电致阿光发布了新的文献求助10
12秒前
12秒前
Ava应助timer采纳,获得10
13秒前
14秒前
14秒前
zhanghuiwang发布了新的文献求助20
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3454789
求助须知:如何正确求助?哪些是违规求助? 3049989
关于积分的说明 9020079
捐赠科研通 2738731
什么是DOI,文献DOI怎么找? 1502219
科研通“疑难数据库(出版商)”最低求助积分说明 694453
邀请新用户注册赠送积分活动 693143