亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SSSIC: Semantics-to-Signal Scalable Image Coding With Learned Structural Representations

计算机科学 比特流 图像压缩 计算机视觉 人工智能 数据压缩 图像分割 分割 模式识别(心理学) 算法 解码方法 图像处理 图像(数学)
作者
Ning Yan,Changsheng Gao,Dong Liu,Houqiang Li,Li Li,Feng Wu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 8939-8954 被引量:20
标识
DOI:10.1109/tip.2021.3121131
摘要

We address the requirement of image coding for joint human-machine vision, i.e., the decoded image serves both human observation and machine analysis/understanding. Previously, human vision and machine vision have been extensively studied by image (signal) compression and (image) feature compression, respectively. Recently, for joint human-machine vision, several studies have been devoted to joint compression of images and features, but the correlation between images and features is still unclear. We identify the deep network as a powerful toolkit for generating structural image representations. From the perspective of information theory, the deep features of an image naturally form an entropy decreasing series: a scalable bitstream is achieved by compressing the features backward from a deeper layer to a shallower layer until culminating with the image signal. Moreover, we can obtain learned representations by training the deep network for a given semantic analysis task or multiple tasks and acquire deep features that are related to semantics. With the learned structural representations, we propose SSSIC, a framework to obtain an embedded bitstream that can be either partially decoded for semantic analysis or fully decoded for human vision. We implement an exemplar SSSIC scheme using coarse-to-fine image classification as the driven semantic analysis task. We also extend the scheme for object detection and instance segmentation tasks. The experimental results demonstrate the effectiveness of the proposed SSSIC framework and establish that the exemplar scheme achieves higher compression efficiency than separate compression of images and features.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tameiki发布了新的文献求助10
2秒前
ding应助Tameiki采纳,获得10
18秒前
19秒前
万能图书馆应助lawang采纳,获得10
41秒前
星辰大海应助lawang采纳,获得10
42秒前
领导范儿应助lawang采纳,获得10
42秒前
善学以致用应助lawang采纳,获得10
42秒前
共享精神应助lawang采纳,获得10
42秒前
JamesPei应助lawang采纳,获得10
42秒前
Lucas应助lawang采纳,获得10
42秒前
Ava应助lawang采纳,获得10
42秒前
SciGPT应助lawang采纳,获得10
42秒前
Owen应助lawang采纳,获得10
42秒前
56秒前
Moto_Fang完成签到 ,获得积分10
56秒前
56秒前
黄院士完成签到 ,获得积分10
59秒前
Hello应助putao采纳,获得10
1分钟前
1分钟前
putao发布了新的文献求助10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
GIA发布了新的文献求助10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
lawang发布了新的文献求助10
2分钟前
2分钟前
lawang发布了新的文献求助10
2分钟前
lawang发布了新的文献求助10
2分钟前
lawang发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658113
求助须知:如何正确求助?哪些是违规求助? 4817258
关于积分的说明 15080877
捐赠科研通 4816425
什么是DOI,文献DOI怎么找? 2577351
邀请新用户注册赠送积分活动 1532344
关于科研通互助平台的介绍 1490957