SSSIC: Semantics-to-Signal Scalable Image Coding With Learned Structural Representations

计算机科学 比特流 图像压缩 计算机视觉 人工智能 数据压缩 图像分割 分割 模式识别(心理学) 算法 解码方法 图像处理 图像(数学)
作者
Ning Yan,Changsheng Gao,Dong Liu,Houqiang Li,Li Li,Feng Wu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 8939-8954 被引量:20
标识
DOI:10.1109/tip.2021.3121131
摘要

We address the requirement of image coding for joint human-machine vision, i.e., the decoded image serves both human observation and machine analysis/understanding. Previously, human vision and machine vision have been extensively studied by image (signal) compression and (image) feature compression, respectively. Recently, for joint human-machine vision, several studies have been devoted to joint compression of images and features, but the correlation between images and features is still unclear. We identify the deep network as a powerful toolkit for generating structural image representations. From the perspective of information theory, the deep features of an image naturally form an entropy decreasing series: a scalable bitstream is achieved by compressing the features backward from a deeper layer to a shallower layer until culminating with the image signal. Moreover, we can obtain learned representations by training the deep network for a given semantic analysis task or multiple tasks and acquire deep features that are related to semantics. With the learned structural representations, we propose SSSIC, a framework to obtain an embedded bitstream that can be either partially decoded for semantic analysis or fully decoded for human vision. We implement an exemplar SSSIC scheme using coarse-to-fine image classification as the driven semantic analysis task. We also extend the scheme for object detection and instance segmentation tasks. The experimental results demonstrate the effectiveness of the proposed SSSIC framework and establish that the exemplar scheme achieves higher compression efficiency than separate compression of images and features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yar应助科研通管家采纳,获得10
刚刚
Bio应助科研通管家采纳,获得40
刚刚
pcr163应助xq1699采纳,获得50
刚刚
桐桐应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
缓慢如南应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
iNk应助科研通管家采纳,获得20
1秒前
努力游游完成签到,获得积分10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
yar应助科研通管家采纳,获得10
1秒前
缓慢如南应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
Happyness应助科研通管家采纳,获得10
2秒前
思源应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
ZEcholy完成签到 ,获得积分20
2秒前
2秒前
2秒前
3秒前
3秒前
111发布了新的文献求助30
4秒前
4秒前
4秒前
归尘应助LLL采纳,获得10
4秒前
李爱国应助cc2064采纳,获得10
4秒前
xiaxianong发布了新的文献求助10
4秒前
Azyyyy发布了新的文献求助10
4秒前
77777完成签到,获得积分10
5秒前
dahuihui发布了新的文献求助10
6秒前
6秒前
小蘑菇应助偷乐采纳,获得10
6秒前
娇气的笑蓝完成签到,获得积分10
6秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582