Cascade of isospin phase transitions in Bernal bilayer graphene at zero magnetic field

双层石墨烯 凝聚态物理 范霍夫奇点 物理 对称性破坏 准粒子 石墨烯 简并能级 电子 量子力学 费米能级 超导电性
作者
Sergio C. de la Barrera,Samuel Aronson,Z. Zheng,Kenji Watanabe,Takashi Taniguchi,Qiong Ma,Pablo Jarillo‐Herrero,R. C. Ashoori
出处
期刊:Cornell University - arXiv 被引量:2
摘要

Emergent phenomena arising from the collective behavior of electrons is generally expected when Coulomb interactions dominate over the kinetic energy, as in delocalized quasiparticles in highly degenerate flat bands. Bernal-stacked bilayer graphene intrinsically supports a pair of flat bands predicted to host a variety of spontaneous broken-symmetry states arising from van Hove singularities and a four-fold spin-valley (isospin) degeneracy. Here, we show that ultra-clean samples of bilayer graphene display a cascade of symmetry-broken states with spontaneous and spin and valley ordering at zero magnetic field. Using capacitive sensing in a dual-gated geometry, we tune the carrier density and electric displacement field independently to explore the phase space of transitions and probe the character of the isospin order. Itinerant ferromagnetic states emerge near the conduction and valence band edges with complete spin and valley polarization and a high degree of displacement field tunability. At larger hole densities, two-fold degenerate quantum oscillations manifest in an additional broken symmetry state that is enhanced by the application of an in-plane magnetic field. Both types of symmetry-broken states display enhanced layer polarization at low temperatures, suggesting a coupling to the layer pseudospin degree of freedom in the electronic wavefunctions. Notably, the zero-field spontaneous symmetry breaking reported here emerges in the absence of a moir\'e superlattice and is intrinsic to natural graphene bilayers. Thus, we demonstrate that the tunable bands of bilayer graphene represent a related, but distinct approach to produce flat band collective behavior, complementary to engineered moir\'e structures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田阳发布了新的文献求助10
刚刚
JUDY发布了新的文献求助10
1秒前
02发布了新的文献求助10
1秒前
ballalla完成签到,获得积分10
2秒前
蔡蔡不菜菜完成签到,获得积分10
2秒前
2秒前
着急的安珊完成签到,获得积分20
2秒前
儒雅的寄翠完成签到,获得积分10
2秒前
老白发布了新的文献求助10
3秒前
研友_VZG7GZ应助槐序零玖采纳,获得10
4秒前
落枫流年完成签到,获得积分20
4秒前
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
华仔应助科研通管家采纳,获得10
6秒前
6秒前
含蓄康发布了新的文献求助10
6秒前
求求接收吧完成签到,获得积分10
7秒前
软绵绵完成签到,获得积分10
7秒前
哎嘿发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
9秒前
大帽完成签到,获得积分10
9秒前
10秒前
CodeCraft应助深夜诗人采纳,获得10
10秒前
黄某关注了科研通微信公众号
10秒前
NexusExplorer应助陈天爱睡觉采纳,获得10
10秒前
11秒前
星星完成签到,获得积分20
11秒前
17835152738发布了新的文献求助10
12秒前
软绵绵发布了新的文献求助20
12秒前
12秒前
Summer完成签到,获得积分10
13秒前
13秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143246
求助须知:如何正确求助?哪些是违规求助? 2794391
关于积分的说明 7811052
捐赠科研通 2450640
什么是DOI,文献DOI怎么找? 1303909
科研通“疑难数据库(出版商)”最低求助积分说明 627144
版权声明 601386