Exploring the optimum spectral bands and pre-treatments for chlorophyll assessment in sunflower leaves from yellowness index

向日葵 黄化 向日葵 反射率 叶绿素 光谱指数 波长 数学 规范化(社会学) 园艺 校准 谱线 环境科学 遥感 植物 化学 生物 物理 光学 统计 地质学 社会学 人类学 天文
作者
Antônio José Steidle Neto,Daniela de Carvalho Lopes
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:42 (23): 9170-9186 被引量:1
标识
DOI:10.1080/01431161.2021.1975840
摘要

The Yellowness Index (YI) was originally developed for evaluating manganese deficient soybean leaves, but it has been successfully applied to indicate chlorosis in stressed leaves of other plant species. Despite distinct vegetal species present very similar spectral signatures, there are subtle differences in their reflectance patterns and magnitudes that influence the performances and the wavelengths used to calculate spectral indices. In this study, an algorithm was developed, capable of finding the best wavelengths for assessing chlorosis of leaves using the YI. The proposed algorithm was tested with spectral reflectance measurements for estimating the chlorophyll content of sunflower (Helianthus annuus L.) leaves submitted to different water stress levels. Original spectral signatures were pre-treated by centring, normalization and detrending methods prior chemometric analyses and results were also evaluated. Both original and modified YI resulted in suitable predictions of sunflower leaf chlorophyll content. The modified YI based on spectra pre-treated with detrend method, and centred between 662 and 750 nm with a band separation of 44 nm, reached higher r2 value (82.31%) and lower RMSE (2.28 and 2.67 µg cm−2) both for calibration and validation datasets, when compared with the results of the other tested pre-treatments and spectral ranges. The proposed algorithm was efficient to search better performances for YI, finding the best wavelengths for assessing chlorophyll content of sunflower leaves. It can be easily used for different chlorosis reference measurements and plant species. When implemented in a software package the proposed algorithm resulted in an effective tool, quickly performing thousand tests by using files containing many spectra and sample data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
123完成签到,获得积分10
刚刚
大胆寒风发布了新的文献求助10
1秒前
luoluo完成签到,获得积分10
2秒前
123发布了新的文献求助10
3秒前
3秒前
鹿叽叽驳回了Ava应助
3秒前
Cathy发布了新的文献求助10
4秒前
wml完成签到,获得积分10
4秒前
科研通AI2S应助可靠向日葵采纳,获得10
4秒前
Aile。完成签到,获得积分10
5秒前
七凉完成签到,获得积分10
5秒前
林钟完成签到,获得积分10
6秒前
漫步云端完成签到,获得积分10
6秒前
一一得一发布了新的文献求助10
6秒前
科研通AI2S应助超级柜子采纳,获得10
7秒前
7秒前
飞快的尔云完成签到,获得积分10
8秒前
xiamu发布了新的文献求助10
8秒前
8秒前
潇洒的奇异果完成签到 ,获得积分10
9秒前
lm完成签到,获得积分10
9秒前
Yancent应助子时过采纳,获得10
10秒前
10秒前
11秒前
Cathy完成签到,获得积分10
12秒前
Bethune完成签到 ,获得积分10
13秒前
小Dannn啊完成签到,获得积分10
14秒前
14秒前
洛洛完成签到,获得积分10
14秒前
16秒前
科研小桶完成签到,获得积分20
16秒前
粱水云完成签到,获得积分10
17秒前
17秒前
18秒前
科研小桶发布了新的文献求助10
18秒前
mirroring完成签到,获得积分10
20秒前
大头发布了新的文献求助10
21秒前
Lucas应助寒月如雪采纳,获得10
23秒前
kkkkk完成签到,获得积分20
24秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Keywords: explanatory textual sequences, motivation, self-determination, academic performance, math, artificial intelligence 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267472
求助须知:如何正确求助?哪些是违规求助? 2906859
关于积分的说明 8339878
捐赠科研通 2577519
什么是DOI,文献DOI怎么找? 1400992
科研通“疑难数据库(出版商)”最低求助积分说明 654998
邀请新用户注册赠送积分活动 633917