Credit Rating Prediction Through Supply Chains: A Machine Learning Approach

供应链 信用评级 业务 信用风险 供应链风险管理 水准点(测量) 私人信息检索 供应链管理 产业组织 财务 服务管理 计算机科学 营销 大地测量学 计算机安全 地理
作者
Jing Wu,Zhaocheng Zhang,Sean X. Zhou
出处
期刊:Production and Operations Management [Wiley]
卷期号:31 (4): 1613-1629 被引量:76
标识
DOI:10.1111/poms.13634
摘要

As supply chain channels physical, financial, and information flows as well as associated risks, a firm's supply chain information should be helpful in understanding and predicting its credit risks. Credit ratings, as an approximate but important measure of corporate credit risks, have been widely used by investors, creditors, and supply chain partners in their decision‐making. This study studies the role of supply chain information in predicting companies’ credit ratings. Using firm‐level supplier–customer linkages and corporate credit rating data, we develop a machine learning framework with gradient boosted decision trees to examine whether and what supply chain features can significantly improve the prediction accuracy of credit ratings, and what types of supply chain links have higher information content that positively affects the predictability of the supply chain features. We construct a firm's supply chain variables from its supplier and customer portfolios. We show that incorporating supply chain features can improve prediction accuracy over the benchmark credit rating model using only the focal firm's features. Moreover, the informativeness of supply chain links in focal credit risk prediction depends on the focal firm's industry sector, the relationship strength of such links, and the switching costs. Finally, we develop a focal credit rating prediction model with a high accuracy level using supply chain factors solely, which can potentially be applied to predict credit risks of small‐ and medium‐sized enterprises (SMEs) and private firms with no public financial information, as long as their supply chain information is available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
脑洞疼应助eriphin采纳,获得10
刚刚
英俊的铭应助xiaowu采纳,获得10
刚刚
ding应助zz采纳,获得10
1秒前
啊喔发布了新的文献求助10
2秒前
2秒前
时间9完成签到,获得积分10
2秒前
2秒前
monly应助阿里嘎多采纳,获得10
2秒前
2秒前
Rui发布了新的文献求助10
2秒前
3秒前
慕慕完成签到 ,获得积分10
3秒前
蒸盐粥发布了新的文献求助10
3秒前
时光发布了新的文献求助10
3秒前
酷波er应助xiaowang采纳,获得10
3秒前
孟严青发布了新的文献求助20
4秒前
清秀皓轩发布了新的文献求助10
4秒前
5秒前
hhj发布了新的文献求助10
5秒前
5秒前
黑沧浪亭发布了新的文献求助10
6秒前
一声空发布了新的文献求助10
6秒前
6秒前
李丽发布了新的文献求助10
6秒前
orixero应助美丽元风采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
热心的忆山完成签到,获得积分10
7秒前
飞快的邴发布了新的文献求助10
7秒前
CC完成签到,获得积分10
8秒前
无花果应助coc采纳,获得10
8秒前
奶爸回家完成签到,获得积分10
8秒前
慕青应助小杨采纳,获得10
8秒前
乐乐应助shaco采纳,获得50
9秒前
略略完成签到,获得积分10
9秒前
所所应助孙帅采纳,获得10
9秒前
打打应助123采纳,获得10
9秒前
10秒前
Hello应助优雅翎采纳,获得10
10秒前
桐桐应助蒸盐粥采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728057
求助须知:如何正确求助?哪些是违规求助? 5311160
关于积分的说明 15312957
捐赠科研通 4875318
什么是DOI,文献DOI怎么找? 2618704
邀请新用户注册赠送积分活动 1568361
关于科研通互助平台的介绍 1525003