Credit Rating Prediction Through Supply Chains: A Machine Learning Approach

供应链 信用评级 业务 信用风险 供应链风险管理 水准点(测量) 私人信息检索 供应链管理 产业组织 财务 服务管理 计算机科学 营销 大地测量学 计算机安全 地理
作者
Jing Wu,Zhaocheng Zhang,Sean X. Zhou
出处
期刊:Production and Operations Management [Wiley]
卷期号:31 (4): 1613-1629 被引量:54
标识
DOI:10.1111/poms.13634
摘要

As supply chain channels physical, financial, and information flows as well as associated risks, a firm's supply chain information should be helpful in understanding and predicting its credit risks. Credit ratings, as an approximate but important measure of corporate credit risks, have been widely used by investors, creditors, and supply chain partners in their decision‐making. This study studies the role of supply chain information in predicting companies’ credit ratings. Using firm‐level supplier–customer linkages and corporate credit rating data, we develop a machine learning framework with gradient boosted decision trees to examine whether and what supply chain features can significantly improve the prediction accuracy of credit ratings, and what types of supply chain links have higher information content that positively affects the predictability of the supply chain features. We construct a firm's supply chain variables from its supplier and customer portfolios. We show that incorporating supply chain features can improve prediction accuracy over the benchmark credit rating model using only the focal firm's features. Moreover, the informativeness of supply chain links in focal credit risk prediction depends on the focal firm's industry sector, the relationship strength of such links, and the switching costs. Finally, we develop a focal credit rating prediction model with a high accuracy level using supply chain factors solely, which can potentially be applied to predict credit risks of small‐ and medium‐sized enterprises (SMEs) and private firms with no public financial information, as long as their supply chain information is available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大模型应助琪琪扬扬采纳,获得10
1秒前
丘比特应助琪琪扬扬采纳,获得10
1秒前
共享精神应助琪琪扬扬采纳,获得10
1秒前
JamesPei应助dafwfwaf采纳,获得10
1秒前
叶子完成签到,获得积分10
1秒前
xuyun完成签到,获得积分10
1秒前
脑洞疼应助木棉采纳,获得10
1秒前
GGG发布了新的文献求助10
1秒前
zena92完成签到,获得积分10
2秒前
2秒前
听风发布了新的文献求助10
3秒前
一一发布了新的文献求助10
3秒前
CC完成签到,获得积分20
4秒前
5秒前
时生111完成签到 ,获得积分10
5秒前
kb发布了新的文献求助10
6秒前
dafwfwaf完成签到,获得积分20
6秒前
Snow完成签到 ,获得积分10
7秒前
7秒前
CC发布了新的文献求助10
7秒前
小苏打完成签到,获得积分10
8秒前
Xiaoxiao应助程琳采纳,获得10
8秒前
ycc完成签到 ,获得积分10
8秒前
畏寒的北完成签到,获得积分10
9秒前
爆米花应助单纯的雅香采纳,获得10
9秒前
俭朴的玉兰完成签到 ,获得积分10
9秒前
10秒前
10秒前
11秒前
11秒前
11秒前
adazbd发布了新的文献求助10
11秒前
Jenny应助木头人采纳,获得10
11秒前
ATAYA完成签到,获得积分10
12秒前
12秒前
畏寒的北发布了新的文献求助10
12秒前
12秒前
13秒前
地下室没有鬼完成签到 ,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808