Credit Rating Prediction Through Supply Chains: A Machine Learning Approach

供应链 信用评级 业务 信用风险 供应链风险管理 水准点(测量) 私人信息检索 供应链管理 产业组织 财务 服务管理 计算机科学 营销 大地测量学 计算机安全 地理
作者
Jing Wu,Zhaocheng Zhang,Sean X. Zhou
出处
期刊:Production and Operations Management [Wiley]
卷期号:31 (4): 1613-1629 被引量:76
标识
DOI:10.1111/poms.13634
摘要

As supply chain channels physical, financial, and information flows as well as associated risks, a firm's supply chain information should be helpful in understanding and predicting its credit risks. Credit ratings, as an approximate but important measure of corporate credit risks, have been widely used by investors, creditors, and supply chain partners in their decision‐making. This study studies the role of supply chain information in predicting companies’ credit ratings. Using firm‐level supplier–customer linkages and corporate credit rating data, we develop a machine learning framework with gradient boosted decision trees to examine whether and what supply chain features can significantly improve the prediction accuracy of credit ratings, and what types of supply chain links have higher information content that positively affects the predictability of the supply chain features. We construct a firm's supply chain variables from its supplier and customer portfolios. We show that incorporating supply chain features can improve prediction accuracy over the benchmark credit rating model using only the focal firm's features. Moreover, the informativeness of supply chain links in focal credit risk prediction depends on the focal firm's industry sector, the relationship strength of such links, and the switching costs. Finally, we develop a focal credit rating prediction model with a high accuracy level using supply chain factors solely, which can potentially be applied to predict credit risks of small‐ and medium‐sized enterprises (SMEs) and private firms with no public financial information, as long as their supply chain information is available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助黄颖采纳,获得10
刚刚
1秒前
大个应助zzk采纳,获得10
1秒前
2秒前
龙傲天发布了新的文献求助30
2秒前
3秒前
邵邵完成签到,获得积分10
4秒前
4秒前
4秒前
天天发布了新的文献求助10
4秒前
科研通AI6应助Ma采纳,获得10
4秒前
ding应助Ma采纳,获得10
4秒前
桔梗完成签到,获得积分10
5秒前
芊芊完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
大圆土豆完成签到 ,获得积分10
6秒前
刘辰完成签到 ,获得积分10
7秒前
华仔应助Liliz采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
硕硕发布了新的文献求助10
8秒前
8秒前
毅1发布了新的文献求助10
8秒前
熊熊完成签到,获得积分20
8秒前
yunnn完成签到,获得积分10
9秒前
Ming Chen发布了新的文献求助10
9秒前
ZK999发布了新的文献求助10
9秒前
csg888888完成签到,获得积分10
10秒前
10秒前
隐形曼青应助汪屿曦采纳,获得30
11秒前
12秒前
白衣完成签到,获得积分20
13秒前
静_静完成签到 ,获得积分10
14秒前
NexusExplorer应助发嗲的慕蕊采纳,获得10
15秒前
zoulanfunny04给zoulanfunny04的求助进行了留言
15秒前
论文顺利完成签到,获得积分10
15秒前
小小圆应助zzz采纳,获得10
15秒前
由富完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666454
求助须知:如何正确求助?哪些是违规求助? 4882107
关于积分的说明 15117498
捐赠科研通 4825502
什么是DOI,文献DOI怎么找? 2583441
邀请新用户注册赠送积分活动 1537599
关于科研通互助平台的介绍 1495756