Credit Rating Prediction Through Supply Chains: A Machine Learning Approach

供应链 信用评级 业务 信用风险 供应链风险管理 水准点(测量) 私人信息检索 供应链管理 产业组织 财务 服务管理 计算机科学 营销 大地测量学 计算机安全 地理
作者
Jing Wu,Zhaocheng Zhang,Sean X. Zhou
出处
期刊:Production and Operations Management [Wiley]
卷期号:31 (4): 1613-1629 被引量:66
标识
DOI:10.1111/poms.13634
摘要

As supply chain channels physical, financial, and information flows as well as associated risks, a firm's supply chain information should be helpful in understanding and predicting its credit risks. Credit ratings, as an approximate but important measure of corporate credit risks, have been widely used by investors, creditors, and supply chain partners in their decision‐making. This study studies the role of supply chain information in predicting companies’ credit ratings. Using firm‐level supplier–customer linkages and corporate credit rating data, we develop a machine learning framework with gradient boosted decision trees to examine whether and what supply chain features can significantly improve the prediction accuracy of credit ratings, and what types of supply chain links have higher information content that positively affects the predictability of the supply chain features. We construct a firm's supply chain variables from its supplier and customer portfolios. We show that incorporating supply chain features can improve prediction accuracy over the benchmark credit rating model using only the focal firm's features. Moreover, the informativeness of supply chain links in focal credit risk prediction depends on the focal firm's industry sector, the relationship strength of such links, and the switching costs. Finally, we develop a focal credit rating prediction model with a high accuracy level using supply chain factors solely, which can potentially be applied to predict credit risks of small‐ and medium‐sized enterprises (SMEs) and private firms with no public financial information, as long as their supply chain information is available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_Z3NGvn发布了新的文献求助10
2秒前
顾矜应助成就嘉人采纳,获得10
2秒前
布溜应助ddrose采纳,获得10
2秒前
田様应助千初采纳,获得10
2秒前
浮游应助祖国小红花采纳,获得10
3秒前
可爱的函函应助尘烟采纳,获得10
3秒前
好运来完成签到,获得积分10
4秒前
江江汪完成签到,获得积分10
4秒前
Thien发布了新的文献求助10
4秒前
4秒前
kikikiki完成签到,获得积分10
5秒前
科研通AI6应助LSW采纳,获得10
6秒前
希希发布了新的文献求助10
6秒前
SciGPT应助yc采纳,获得10
8秒前
LUO完成签到,获得积分20
8秒前
赵sir完成签到,获得积分20
9秒前
好运来发布了新的文献求助10
10秒前
12秒前
华仔应助科研小白采纳,获得10
13秒前
floraaa完成签到,获得积分10
13秒前
14秒前
浮游应助司阔林采纳,获得10
14秒前
14秒前
15秒前
15秒前
16秒前
lxz发布了新的文献求助10
18秒前
疯狂的刚完成签到,获得积分10
18秒前
18秒前
19秒前
19秒前
19秒前
rachell发布了新的文献求助10
19秒前
千初完成签到,获得积分10
21秒前
雨辰完成签到,获得积分10
21秒前
张继国发布了新的文献求助10
21秒前
22秒前
23秒前
叶也发布了新的文献求助10
23秒前
千初发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5005969
求助须知:如何正确求助?哪些是违规求助? 4249507
关于积分的说明 13241150
捐赠科研通 4049265
什么是DOI,文献DOI怎么找? 2215242
邀请新用户注册赠送积分活动 1225168
关于科研通互助平台的介绍 1145745