Credit Rating Prediction Through Supply Chains: A Machine Learning Approach

供应链 信用评级 业务 信用风险 供应链风险管理 水准点(测量) 私人信息检索 供应链管理 产业组织 财务 服务管理 计算机科学 营销 大地测量学 计算机安全 地理
作者
Jing Wu,Zhaocheng Zhang,Sean X. Zhou
出处
期刊:Production and Operations Management [Wiley]
卷期号:31 (4): 1613-1629 被引量:76
标识
DOI:10.1111/poms.13634
摘要

As supply chain channels physical, financial, and information flows as well as associated risks, a firm's supply chain information should be helpful in understanding and predicting its credit risks. Credit ratings, as an approximate but important measure of corporate credit risks, have been widely used by investors, creditors, and supply chain partners in their decision‐making. This study studies the role of supply chain information in predicting companies’ credit ratings. Using firm‐level supplier–customer linkages and corporate credit rating data, we develop a machine learning framework with gradient boosted decision trees to examine whether and what supply chain features can significantly improve the prediction accuracy of credit ratings, and what types of supply chain links have higher information content that positively affects the predictability of the supply chain features. We construct a firm's supply chain variables from its supplier and customer portfolios. We show that incorporating supply chain features can improve prediction accuracy over the benchmark credit rating model using only the focal firm's features. Moreover, the informativeness of supply chain links in focal credit risk prediction depends on the focal firm's industry sector, the relationship strength of such links, and the switching costs. Finally, we develop a focal credit rating prediction model with a high accuracy level using supply chain factors solely, which can potentially be applied to predict credit risks of small‐ and medium‐sized enterprises (SMEs) and private firms with no public financial information, as long as their supply chain information is available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
成就的迎夏完成签到,获得积分10
1秒前
Howard完成签到,获得积分10
1秒前
2秒前
JamesPei应助1111采纳,获得10
4秒前
西西完成签到 ,获得积分10
4秒前
4秒前
5秒前
6秒前
Chaos完成签到,获得积分10
6秒前
6秒前
7秒前
li发布了新的文献求助10
7秒前
xiaowentu完成签到,获得积分10
8秒前
学术五车发布了新的文献求助10
9秒前
西西弗斯发布了新的文献求助10
9秒前
9秒前
杨66发布了新的文献求助10
9秒前
璀璨发布了新的文献求助10
10秒前
11秒前
丘比特应助圭臬采纳,获得10
12秒前
qc发布了新的文献求助10
12秒前
内向蜡烛完成签到,获得积分10
12秒前
Lucas应助无限paper采纳,获得30
12秒前
Akim应助劉平果采纳,获得10
13秒前
张宝完成签到,获得积分10
13秒前
AJO发布了新的文献求助10
14秒前
科研通AI6应助爱听歌时光采纳,获得10
14秒前
15秒前
15秒前
15秒前
准炮打不准完成签到,获得积分10
16秒前
斯文败类应助sunset5min采纳,获得20
16秒前
17秒前
bkagyin应助璀璨采纳,获得10
17秒前
18秒前
无花果应助年少的人采纳,获得10
18秒前
yang完成签到,获得积分10
19秒前
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355483
求助须知:如何正确求助?哪些是违规求助? 4487366
关于积分的说明 13969755
捐赠科研通 4387995
什么是DOI,文献DOI怎么找? 2410805
邀请新用户注册赠送积分活动 1403340
关于科研通互助平台的介绍 1376902