亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Credit Rating Prediction Through Supply Chains: A Machine Learning Approach

供应链 信用评级 业务 信用风险 供应链风险管理 水准点(测量) 私人信息检索 供应链管理 产业组织 财务 服务管理 计算机科学 营销 大地测量学 计算机安全 地理
作者
Jing Wu,Zhaocheng Zhang,Sean X. Zhou
出处
期刊:Production and Operations Management [Wiley]
卷期号:31 (4): 1613-1629 被引量:76
标识
DOI:10.1111/poms.13634
摘要

As supply chain channels physical, financial, and information flows as well as associated risks, a firm's supply chain information should be helpful in understanding and predicting its credit risks. Credit ratings, as an approximate but important measure of corporate credit risks, have been widely used by investors, creditors, and supply chain partners in their decision‐making. This study studies the role of supply chain information in predicting companies’ credit ratings. Using firm‐level supplier–customer linkages and corporate credit rating data, we develop a machine learning framework with gradient boosted decision trees to examine whether and what supply chain features can significantly improve the prediction accuracy of credit ratings, and what types of supply chain links have higher information content that positively affects the predictability of the supply chain features. We construct a firm's supply chain variables from its supplier and customer portfolios. We show that incorporating supply chain features can improve prediction accuracy over the benchmark credit rating model using only the focal firm's features. Moreover, the informativeness of supply chain links in focal credit risk prediction depends on the focal firm's industry sector, the relationship strength of such links, and the switching costs. Finally, we develop a focal credit rating prediction model with a high accuracy level using supply chain factors solely, which can potentially be applied to predict credit risks of small‐ and medium‐sized enterprises (SMEs) and private firms with no public financial information, as long as their supply chain information is available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7_2U1发布了新的文献求助10
刚刚
刚刚
7_2U1完成签到,获得积分20
13秒前
20秒前
21秒前
Panther完成签到,获得积分10
25秒前
56秒前
RE完成签到 ,获得积分10
57秒前
量子星尘发布了新的文献求助30
1分钟前
paannqi完成签到,获得积分10
1分钟前
zone54188完成签到,获得积分10
1分钟前
1分钟前
Wa1Zh0u发布了新的文献求助30
1分钟前
嘻嘻完成签到,获得积分10
1分钟前
liman发布了新的文献求助30
1分钟前
summer完成签到,获得积分10
1分钟前
噜噜完成签到,获得积分10
2分钟前
隐形曼青应助噜噜采纳,获得30
2分钟前
2分钟前
小珂完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
愿景发布了新的文献求助10
4分钟前
平常寄容发布了新的文献求助10
4分钟前
我是老大应助徐志豪采纳,获得10
4分钟前
平常寄容完成签到,获得积分20
4分钟前
Wa1Zh0u完成签到,获得积分20
4分钟前
bkagyin应助愿景采纳,获得10
5分钟前
5分钟前
归尘应助liman采纳,获得10
5分钟前
Twonej应助Wa1Zh0u采纳,获得30
5分钟前
5分钟前
Jasper应助科研通管家采纳,获得30
5分钟前
Akim应助科研通管家采纳,获得10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
yg发布了新的文献求助10
5分钟前
5分钟前
5分钟前
BowieHuang应助Wa1Zh0u采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723993
求助须知:如何正确求助?哪些是违规求助? 5283171
关于积分的说明 15299496
捐赠科研通 4872203
什么是DOI,文献DOI怎么找? 2616637
邀请新用户注册赠送积分活动 1566530
关于科研通互助平台的介绍 1523401