Credit Rating Prediction Through Supply Chains: A Machine Learning Approach

供应链 信用评级 业务 信用风险 供应链风险管理 水准点(测量) 私人信息检索 供应链管理 产业组织 财务 服务管理 计算机科学 营销 大地测量学 计算机安全 地理
作者
Jing Wu,Zhaocheng Zhang,Sean X. Zhou
出处
期刊:Production and Operations Management [Wiley]
卷期号:31 (4): 1613-1629 被引量:54
标识
DOI:10.1111/poms.13634
摘要

As supply chain channels physical, financial, and information flows as well as associated risks, a firm's supply chain information should be helpful in understanding and predicting its credit risks. Credit ratings, as an approximate but important measure of corporate credit risks, have been widely used by investors, creditors, and supply chain partners in their decision‐making. This study studies the role of supply chain information in predicting companies’ credit ratings. Using firm‐level supplier–customer linkages and corporate credit rating data, we develop a machine learning framework with gradient boosted decision trees to examine whether and what supply chain features can significantly improve the prediction accuracy of credit ratings, and what types of supply chain links have higher information content that positively affects the predictability of the supply chain features. We construct a firm's supply chain variables from its supplier and customer portfolios. We show that incorporating supply chain features can improve prediction accuracy over the benchmark credit rating model using only the focal firm's features. Moreover, the informativeness of supply chain links in focal credit risk prediction depends on the focal firm's industry sector, the relationship strength of such links, and the switching costs. Finally, we develop a focal credit rating prediction model with a high accuracy level using supply chain factors solely, which can potentially be applied to predict credit risks of small‐ and medium‐sized enterprises (SMEs) and private firms with no public financial information, as long as their supply chain information is available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助JIE采纳,获得10
2秒前
南庭完成签到,获得积分10
2秒前
杰瑞院士发布了新的文献求助10
3秒前
充电宝应助李星采纳,获得30
3秒前
上官若男应助TJY采纳,获得10
4秒前
CipherSage应助胖虎啊采纳,获得10
7秒前
yujiayou完成签到,获得积分10
7秒前
7秒前
冷酷的乐驹完成签到 ,获得积分10
8秒前
酷波er应助yuaaaann采纳,获得10
8秒前
9秒前
小young完成签到 ,获得积分10
11秒前
Nathan完成签到 ,获得积分10
11秒前
11秒前
12秒前
13秒前
14秒前
曾经的听云完成签到 ,获得积分10
14秒前
12发布了新的文献求助10
14秒前
NexusExplorer应助杰瑞院士采纳,获得10
15秒前
上官若男应助杰瑞院士采纳,获得10
15秒前
薰硝壤应助LILIYI采纳,获得10
15秒前
NPC-CBI完成签到,获得积分10
15秒前
敏感时光完成签到,获得积分10
15秒前
充电宝应助朱佳玉采纳,获得10
16秒前
siso发布了新的文献求助10
17秒前
852应助123butterfly采纳,获得10
17秒前
七七八八发布了新的文献求助10
18秒前
18秒前
orietta关注了科研通微信公众号
18秒前
千桑客完成签到,获得积分10
18秒前
胖虎啊发布了新的文献求助10
20秒前
yuaaaann发布了新的文献求助10
23秒前
23秒前
25秒前
GZX完成签到,获得积分10
26秒前
26秒前
dpp发布了新的文献求助10
26秒前
壮观的衫完成签到,获得积分10
27秒前
siso完成签到,获得积分10
27秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141127
求助须知:如何正确求助?哪些是违规求助? 2792031
关于积分的说明 7801479
捐赠科研通 2448267
什么是DOI,文献DOI怎么找? 1302482
科研通“疑难数据库(出版商)”最低求助积分说明 626591
版权声明 601226