Credit Rating Prediction Through Supply Chains: A Machine Learning Approach

供应链 信用评级 业务 信用风险 供应链风险管理 水准点(测量) 私人信息检索 供应链管理 产业组织 财务 服务管理 计算机科学 营销 大地测量学 计算机安全 地理
作者
Jing Wu,Zhaocheng Zhang,Sean X. Zhou
出处
期刊:Production and Operations Management [Wiley]
卷期号:31 (4): 1613-1629 被引量:76
标识
DOI:10.1111/poms.13634
摘要

As supply chain channels physical, financial, and information flows as well as associated risks, a firm's supply chain information should be helpful in understanding and predicting its credit risks. Credit ratings, as an approximate but important measure of corporate credit risks, have been widely used by investors, creditors, and supply chain partners in their decision‐making. This study studies the role of supply chain information in predicting companies’ credit ratings. Using firm‐level supplier–customer linkages and corporate credit rating data, we develop a machine learning framework with gradient boosted decision trees to examine whether and what supply chain features can significantly improve the prediction accuracy of credit ratings, and what types of supply chain links have higher information content that positively affects the predictability of the supply chain features. We construct a firm's supply chain variables from its supplier and customer portfolios. We show that incorporating supply chain features can improve prediction accuracy over the benchmark credit rating model using only the focal firm's features. Moreover, the informativeness of supply chain links in focal credit risk prediction depends on the focal firm's industry sector, the relationship strength of such links, and the switching costs. Finally, we develop a focal credit rating prediction model with a high accuracy level using supply chain factors solely, which can potentially be applied to predict credit risks of small‐ and medium‐sized enterprises (SMEs) and private firms with no public financial information, as long as their supply chain information is available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
aaaaa发布了新的文献求助10
1秒前
随遇而安完成签到 ,获得积分10
1秒前
帅气的乘云完成签到,获得积分10
2秒前
3秒前
冰魄落叶完成签到,获得积分10
3秒前
花源发布了新的文献求助10
3秒前
C14yd3n发布了新的文献求助10
3秒前
4秒前
5秒前
陶醉的乌冬面完成签到,获得积分10
6秒前
CR完成签到,获得积分10
6秒前
桐桐应助碧蓝曼冬采纳,获得10
7秒前
小欢发布了新的文献求助10
8秒前
luo2发布了新的文献求助10
8秒前
khy9876完成签到,获得积分10
8秒前
肥仔ffff完成签到,获得积分10
10秒前
GUYIMI完成签到,获得积分10
10秒前
11秒前
light完成签到,获得积分10
11秒前
12秒前
淡定的美女完成签到,获得积分10
12秒前
12345完成签到,获得积分10
12秒前
是晓宇啊完成签到,获得积分10
12秒前
13秒前
1111应助darling采纳,获得10
13秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
16秒前
17秒前
小淮发布了新的文献求助10
17秒前
战神幽默发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
醉眠完成签到 ,获得积分10
19秒前
如意冥茗完成签到 ,获得积分10
19秒前
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5712345
求助须知:如何正确求助?哪些是违规求助? 5209385
关于积分的说明 15267184
捐赠科研通 4864321
什么是DOI,文献DOI怎么找? 2611345
邀请新用户注册赠送积分活动 1561615
关于科研通互助平台的介绍 1518892