Credit Rating Prediction Through Supply Chains: A Machine Learning Approach

供应链 信用评级 业务 信用风险 供应链风险管理 水准点(测量) 私人信息检索 供应链管理 产业组织 财务 服务管理 计算机科学 营销 大地测量学 计算机安全 地理
作者
Jing Wu,Zhaocheng Zhang,Sean X. Zhou
出处
期刊:Production and Operations Management [Wiley]
卷期号:31 (4): 1613-1629 被引量:76
标识
DOI:10.1111/poms.13634
摘要

As supply chain channels physical, financial, and information flows as well as associated risks, a firm's supply chain information should be helpful in understanding and predicting its credit risks. Credit ratings, as an approximate but important measure of corporate credit risks, have been widely used by investors, creditors, and supply chain partners in their decision‐making. This study studies the role of supply chain information in predicting companies’ credit ratings. Using firm‐level supplier–customer linkages and corporate credit rating data, we develop a machine learning framework with gradient boosted decision trees to examine whether and what supply chain features can significantly improve the prediction accuracy of credit ratings, and what types of supply chain links have higher information content that positively affects the predictability of the supply chain features. We construct a firm's supply chain variables from its supplier and customer portfolios. We show that incorporating supply chain features can improve prediction accuracy over the benchmark credit rating model using only the focal firm's features. Moreover, the informativeness of supply chain links in focal credit risk prediction depends on the focal firm's industry sector, the relationship strength of such links, and the switching costs. Finally, we develop a focal credit rating prediction model with a high accuracy level using supply chain factors solely, which can potentially be applied to predict credit risks of small‐ and medium‐sized enterprises (SMEs) and private firms with no public financial information, as long as their supply chain information is available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
义气绿竹完成签到,获得积分10
刚刚
1秒前
健壮凡桃发布了新的文献求助50
1秒前
1秒前
核桃发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
2秒前
2秒前
2秒前
清一完成签到,获得积分10
3秒前
3秒前
4秒前
华仔应助lqqqq采纳,获得10
4秒前
4秒前
qx完成签到,获得积分10
4秒前
6秒前
charint发布了新的文献求助10
6秒前
匆匆完成签到 ,获得积分10
6秒前
黄立伟发布了新的文献求助30
6秒前
清一发布了新的文献求助10
7秒前
小白鼠发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
8秒前
无问西东发布了新的文献求助10
9秒前
郝好东发布了新的文献求助10
9秒前
Labubuz发布了新的文献求助10
9秒前
10秒前
10秒前
zhangzhang完成签到,获得积分10
10秒前
11发布了新的文献求助10
11秒前
11秒前
星辰大海应助Yixuan_Zou采纳,获得10
11秒前
即兴完成签到,获得积分10
11秒前
猫咪完成签到,获得积分10
12秒前
12秒前
CNS发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5609846
求助须知:如何正确求助?哪些是违规求助? 4694420
关于积分的说明 14882214
捐赠科研通 4720449
什么是DOI,文献DOI怎么找? 2544941
邀请新用户注册赠送积分活动 1509785
关于科研通互助平台的介绍 1473002