Credit Rating Prediction Through Supply Chains: A Machine Learning Approach

供应链 信用评级 业务 信用风险 供应链风险管理 水准点(测量) 私人信息检索 供应链管理 产业组织 财务 服务管理 计算机科学 营销 大地测量学 计算机安全 地理
作者
Jing Wu,Zhaocheng Zhang,Sean X. Zhou
出处
期刊:Production and Operations Management [Wiley]
卷期号:31 (4): 1613-1629 被引量:76
标识
DOI:10.1111/poms.13634
摘要

As supply chain channels physical, financial, and information flows as well as associated risks, a firm's supply chain information should be helpful in understanding and predicting its credit risks. Credit ratings, as an approximate but important measure of corporate credit risks, have been widely used by investors, creditors, and supply chain partners in their decision‐making. This study studies the role of supply chain information in predicting companies’ credit ratings. Using firm‐level supplier–customer linkages and corporate credit rating data, we develop a machine learning framework with gradient boosted decision trees to examine whether and what supply chain features can significantly improve the prediction accuracy of credit ratings, and what types of supply chain links have higher information content that positively affects the predictability of the supply chain features. We construct a firm's supply chain variables from its supplier and customer portfolios. We show that incorporating supply chain features can improve prediction accuracy over the benchmark credit rating model using only the focal firm's features. Moreover, the informativeness of supply chain links in focal credit risk prediction depends on the focal firm's industry sector, the relationship strength of such links, and the switching costs. Finally, we develop a focal credit rating prediction model with a high accuracy level using supply chain factors solely, which can potentially be applied to predict credit risks of small‐ and medium‐sized enterprises (SMEs) and private firms with no public financial information, as long as their supply chain information is available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
uu完成签到 ,获得积分10
3秒前
4秒前
xhm发布了新的文献求助10
5秒前
你的左轮呢完成签到,获得积分10
5秒前
5秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
此时此刻发布了新的文献求助10
10秒前
10秒前
10秒前
香蕉觅云应助科研助理采纳,获得10
11秒前
11秒前
XIA发布了新的文献求助20
11秒前
荤素搭配关注了科研通微信公众号
11秒前
ohh发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
orixero应助清曼采纳,获得10
13秒前
14秒前
15秒前
15秒前
小文发布了新的文献求助10
15秒前
15秒前
莫123发布了新的文献求助10
17秒前
Liu发布了新的文献求助10
17秒前
木木啊完成签到,获得积分10
17秒前
搜集达人应助al采纳,获得10
17秒前
大大怪完成签到 ,获得积分10
18秒前
18秒前
applemajh发布了新的文献求助10
18秒前
顾矜应助陈文力采纳,获得10
19秒前
panpan发布了新的文献求助30
19秒前
19秒前
CodeCraft应助J1Ang采纳,获得10
19秒前
ohh完成签到,获得积分10
19秒前
20秒前
xixia发布了新的文献求助10
20秒前
激昂的青完成签到,获得积分10
21秒前
思源应助YH采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5769838
求助须知:如何正确求助?哪些是违规求助? 5581810
关于积分的说明 15422799
捐赠科研通 4903452
什么是DOI,文献DOI怎么找? 2638206
邀请新用户注册赠送积分活动 1586102
关于科研通互助平台的介绍 1541215