Association of Insulin Resistance and Type 2 Diabetes With Gut Microbial Diversity

胰岛素抵抗 2型糖尿病 人口 微生物群 糖尿病 混淆 生物 β多样性 医学 老年学 人口学 内科学 生态学 物种丰富度 环境卫生 生物信息学 内分泌学 社会学
作者
Zhangling Chen,Djawad Radjabzadeh,Lianmin Chen,Alexander Kurilshikov,Maryam Kavousi,Fariba Ahmadizar,M. Arfan Ikram,André G. Uitterlinden,Alexandra Zhernakova,Jingyuan Fu,Robert Kraaij,Trudy Voortman
出处
期刊:JAMA network open [American Medical Association]
卷期号:4 (7): e2118811-e2118811 被引量:127
标识
DOI:10.1001/jamanetworkopen.2021.18811
摘要

Previous studies have indicated that gut microbiome may be associated with development of type 2 diabetes. However, these studies are limited by small sample size and insufficient for confounding. Furthermore, which specific taxa play a role in the development of type 2 diabetes remains unclear.To examine associations of gut microbiome composition with insulin resistance and type 2 diabetes in a large population-based setting controlling for various sociodemographic and lifestyle factors.This cross-sectional analysis included 2166 participants from 2 Dutch population-based prospective cohorts: the Rotterdam Study and the LifeLines-DEEP study.The 16S ribosomal RNA method was used to measure microbiome composition in stool samples collected between January 1, 2012, and December 31, 2013. The α diversity (Shannon, richness, and Inverse Simpson indexes), β diversity (Bray-Curtis dissimilarity matrix), and taxa (from domain to genus level) were identified to reflect gut microbiome composition.Associations among α diversity, β diversity, and taxa with the Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) and with type 2 diabetes were examined. Glucose and insulin were measured to calculate the HOMA-IR. Type 2 diabetes cases were identified based on glucose levels and medical records from January 2012 to December 2013. Analyses were adjusted for technical covariates, lifestyle, sociodemographic, and medical factors. Data analysis was performed from January 1, 2018, to December 31, 2020.There were 2166 participants in this study: 1418 from the Rotterdam Study (mean [SD] age, 62.4 [5.9] years; 815 [57.5%] male) and 748 from the LifeLines-DEEP study (mean [SD] age, 44.7 [13.4] years; 431 [57.6%] male); from this total, 193 type 2 diabetes cases were identified. Lower microbiome Shannon index and richness were associated with higher HOMA-IR (eg, Shannon index, -0.06; 95% CI, -0.10 to -0.02), and patients with type 2 diabetes had a lower richness than participants without diabetes (odds ratio [OR], 0.93; 95% CI, 0.88-0.99). The β diversity (Bray-Curtis dissimilarity matrix) was associated with insulin resistance (R2 = 0.004, P = .001 in the Rotterdam Study and R2 = 0.005, P = .002 in the LifeLines-DEEP study). A total of 12 groups of bacteria were associated with HOMA-IR or type 2 diabetes. Specifically, a higher abundance of Christensenellaceae (β = -0.08; 95% CI, -0.12 to -0.03: P < .001), Christensenellaceae R7 group (β = -0.07; 95% CI, -0.12 to -0.03; P < .001), Marvinbryantia (β = -0.07; 95% CI, -0.11 to -0.03; P < .001), Ruminococcaceae UCG005 (β = -0.09; 95% CI, -0.13 to -0.05; P < .001), Ruminococcaceae UCG008 (β = -0.07; 95% CI, -0.11 to -0.03; P < .001), Ruminococcaceae UCG010 (β = -0.08; 95% CI, -0.12 to -0.04; P < .001), or Ruminococcaceae NK4A214 group (β = -0.09; 95% CI, -0.13 to -0.05; P < .001) was associated with lower HOMA-IR. A higher abundance of Clostridiaceae 1 (OR, 0.51; 95% CI, 0.41-0.65; P < .001), Peptostreptococcaceae (OR, 0.56; 95% CI, 0.45-0.70; P < .001), C sensu stricto 1 (OR, 0.51; 95% CI, 0.40-0.65; P < .001), Intestinibacter (OR, 0.60; 95% CI, 0.48-0.76; P < .001), or Romboutsia (OR, 0.55; 95% CI, 0.44-0.70; P < .001) was associated with less type 2 diabetes. These bacteria are all known to produce butyrate.In this cross-sectional study, higher microbiome α diversity, along with more butyrate-producing gut bacteria, was associated with less type 2 diabetes and with lower insulin resistance among individuals without diabetes. These findings could help provide insight into the etiology, pathogenesis, and treatment of type 2 diabetes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尺素寸心发布了新的文献求助10
1秒前
义气鲂发布了新的文献求助10
1秒前
xz发布了新的文献求助20
1秒前
春天发布了新的文献求助10
2秒前
2秒前
hdh016完成签到,获得积分10
3秒前
5秒前
桐桐应助zhangzhang采纳,获得10
6秒前
CAOHOU应助科研通管家采纳,获得10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
打打应助科研通管家采纳,获得10
6秒前
7秒前
CAOHOU应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
Rondab应助科研通管家采纳,获得10
7秒前
田様应助科研通管家采纳,获得10
7秒前
7秒前
Rondab应助科研通管家采纳,获得10
7秒前
CAOHOU应助科研通管家采纳,获得10
7秒前
7秒前
asdfqwer应助科研通管家采纳,获得10
7秒前
Rondab应助科研通管家采纳,获得10
7秒前
CAOHOU应助科研通管家采纳,获得10
7秒前
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
生活不是电影完成签到,获得积分10
8秒前
pj发布了新的文献求助10
10秒前
尺素寸心完成签到,获得积分10
10秒前
11秒前
利昂发布了新的文献求助10
12秒前
布的奈何发布了新的文献求助10
13秒前
橙啊晨给橙啊晨的求助进行了留言
13秒前
义气鲂完成签到,获得积分20
14秒前
香蕉觅云应助忘年交采纳,获得10
17秒前
25秒前
爆米花应助Alexis_H采纳,获得10
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966919
求助须知:如何正确求助?哪些是违规求助? 3512387
关于积分的说明 11162970
捐赠科研通 3247220
什么是DOI,文献DOI怎么找? 1793752
邀请新用户注册赠送积分活动 874603
科研通“疑难数据库(出版商)”最低求助积分说明 804432