Association of Insulin Resistance and Type 2 Diabetes With Gut Microbial Diversity

胰岛素抵抗 2型糖尿病 人口 微生物群 糖尿病 混淆 生物 β多样性 医学 老年学 人口学 内科学 生态学 物种丰富度 环境卫生 生物信息学 内分泌学 社会学
作者
Zhangling Chen,Djawad Radjabzadeh,Lianmin Chen,Alexander Kurilshikov,Maryam Kavousi,Fariba Ahmadizar,M. Arfan Ikram,André G. Uitterlinden,Alexandra Zhernakova,Jingyuan Fu,Robert Kraaij,Trudy Voortman
出处
期刊:JAMA network open [American Medical Association]
卷期号:4 (7): e2118811-e2118811 被引量:127
标识
DOI:10.1001/jamanetworkopen.2021.18811
摘要

Previous studies have indicated that gut microbiome may be associated with development of type 2 diabetes. However, these studies are limited by small sample size and insufficient for confounding. Furthermore, which specific taxa play a role in the development of type 2 diabetes remains unclear.To examine associations of gut microbiome composition with insulin resistance and type 2 diabetes in a large population-based setting controlling for various sociodemographic and lifestyle factors.This cross-sectional analysis included 2166 participants from 2 Dutch population-based prospective cohorts: the Rotterdam Study and the LifeLines-DEEP study.The 16S ribosomal RNA method was used to measure microbiome composition in stool samples collected between January 1, 2012, and December 31, 2013. The α diversity (Shannon, richness, and Inverse Simpson indexes), β diversity (Bray-Curtis dissimilarity matrix), and taxa (from domain to genus level) were identified to reflect gut microbiome composition.Associations among α diversity, β diversity, and taxa with the Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) and with type 2 diabetes were examined. Glucose and insulin were measured to calculate the HOMA-IR. Type 2 diabetes cases were identified based on glucose levels and medical records from January 2012 to December 2013. Analyses were adjusted for technical covariates, lifestyle, sociodemographic, and medical factors. Data analysis was performed from January 1, 2018, to December 31, 2020.There were 2166 participants in this study: 1418 from the Rotterdam Study (mean [SD] age, 62.4 [5.9] years; 815 [57.5%] male) and 748 from the LifeLines-DEEP study (mean [SD] age, 44.7 [13.4] years; 431 [57.6%] male); from this total, 193 type 2 diabetes cases were identified. Lower microbiome Shannon index and richness were associated with higher HOMA-IR (eg, Shannon index, -0.06; 95% CI, -0.10 to -0.02), and patients with type 2 diabetes had a lower richness than participants without diabetes (odds ratio [OR], 0.93; 95% CI, 0.88-0.99). The β diversity (Bray-Curtis dissimilarity matrix) was associated with insulin resistance (R2 = 0.004, P = .001 in the Rotterdam Study and R2 = 0.005, P = .002 in the LifeLines-DEEP study). A total of 12 groups of bacteria were associated with HOMA-IR or type 2 diabetes. Specifically, a higher abundance of Christensenellaceae (β = -0.08; 95% CI, -0.12 to -0.03: P < .001), Christensenellaceae R7 group (β = -0.07; 95% CI, -0.12 to -0.03; P < .001), Marvinbryantia (β = -0.07; 95% CI, -0.11 to -0.03; P < .001), Ruminococcaceae UCG005 (β = -0.09; 95% CI, -0.13 to -0.05; P < .001), Ruminococcaceae UCG008 (β = -0.07; 95% CI, -0.11 to -0.03; P < .001), Ruminococcaceae UCG010 (β = -0.08; 95% CI, -0.12 to -0.04; P < .001), or Ruminococcaceae NK4A214 group (β = -0.09; 95% CI, -0.13 to -0.05; P < .001) was associated with lower HOMA-IR. A higher abundance of Clostridiaceae 1 (OR, 0.51; 95% CI, 0.41-0.65; P < .001), Peptostreptococcaceae (OR, 0.56; 95% CI, 0.45-0.70; P < .001), C sensu stricto 1 (OR, 0.51; 95% CI, 0.40-0.65; P < .001), Intestinibacter (OR, 0.60; 95% CI, 0.48-0.76; P < .001), or Romboutsia (OR, 0.55; 95% CI, 0.44-0.70; P < .001) was associated with less type 2 diabetes. These bacteria are all known to produce butyrate.In this cross-sectional study, higher microbiome α diversity, along with more butyrate-producing gut bacteria, was associated with less type 2 diabetes and with lower insulin resistance among individuals without diabetes. These findings could help provide insight into the etiology, pathogenesis, and treatment of type 2 diabetes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yxdjzwx完成签到,获得积分10
1秒前
共享精神应助木仔仔采纳,获得10
2秒前
lpj完成签到,获得积分10
2秒前
领导范儿应助ARIA采纳,获得10
2秒前
3秒前
单纯契发布了新的文献求助10
3秒前
4秒前
4秒前
5秒前
hedianmoony完成签到,获得积分20
5秒前
jou完成签到,获得积分10
6秒前
明亮寒安完成签到,获得积分10
6秒前
西皮发布了新的文献求助10
8秒前
wanci应助111采纳,获得10
10秒前
小吴完成签到,获得积分20
10秒前
desperate完成签到,获得积分20
10秒前
小蘑菇应助妞妞月采纳,获得10
10秒前
赘婿应助汎影采纳,获得10
12秒前
13秒前
宁小满完成签到,获得积分10
13秒前
深情安青应助西皮采纳,获得10
14秒前
心心哈发布了新的文献求助10
15秒前
冷酷的又亦完成签到 ,获得积分20
16秒前
16秒前
17秒前
资幻枫完成签到,获得积分10
17秒前
周周发布了新的文献求助10
19秒前
yyz应助phw2333采纳,获得30
19秒前
sansronds完成签到,获得积分10
19秒前
20秒前
资幻枫发布了新的文献求助10
20秒前
JhShang完成签到,获得积分10
21秒前
111发布了新的文献求助10
21秒前
21秒前
善学以致用应助汎影采纳,获得10
22秒前
负责的千易完成签到,获得积分20
22秒前
充电宝应助whoknowsname采纳,获得10
23秒前
24秒前
25秒前
南北发布了新的文献求助10
25秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138230
求助须知:如何正确求助?哪些是违规求助? 2789160
关于积分的说明 7790351
捐赠科研通 2445545
什么是DOI,文献DOI怎么找? 1300521
科研通“疑难数据库(出版商)”最低求助积分说明 625925
版权声明 601046