Revealing new therapeutic opportunities in hypertension through network-driven integrative genetic analysis and drug target prediction approach

生物 小RNA 计算生物学 生物信息学 药理学 基因 药品 遗传学
作者
Kavita Sharma,Prithvi Singh,Md Amjad Beg,Ravins Dohare,Fareeda Athar,Mansoor Ali Syed
出处
期刊:Gene [Elsevier]
卷期号:801: 145856-145856 被引量:6
标识
DOI:10.1016/j.gene.2021.145856
摘要

Epidemiological studies have established that untreated hypertension (HTN) is a major independent risk factor for developing cardiovascular diseases (CVD), stroke, renal failure, and other conditions. Several important studies have been published to prevent and manage HTN; however, antihypertensive agents' optimal choice remains controversial. Therefore, the present study is undertaken to update our knowledge in the primary treatment of HTN, specifically in the setting of other three important diseases. MicroRNAs (miRNAs) are remarkably stable short endogenous conserved non-coding RNAs that bind to the mRNA at its (3′ UTR) to regulate its gene expression by causing translational repression or mRNA degradation. Through their coordinated activities on different pathways and networks, individual miRNAs control normal and pathological cellular processes. Therefore, to identify the critical miRNA-mRNA-TF interactions, we performed systematic bioinformatics analysis. We have also employed the molecular modelling and docking approach to identify the therapeutic target that delivers novel empathies into Food and Drug Administration approved and herbal drug response physiology. Gene Expression Omnibus (GEO) was employed to identify the differentially expressed genes (DEGs) and hub genes- KNG1, HLA-DPB1, CXCL8, IL1B, and BCL2. The HTN associated feed-forward loop (FFL) network included miR-9-5p, KNG1 and AR. We employed high throughput screening to get the best interacting compounds, telmisartan and limonin, that provided a significant docking score (−13.3 and −12.0 kcal/mol) and a potential protective effect that may help to combat the impact of HTN. The present study provides novel insight into HTN etiology through the identification of mRNAs and miRNAs and associated pathways.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
研友_EZ1aNZ关注了科研通微信公众号
2秒前
扁舟灬完成签到,获得积分10
3秒前
帅气的祥发布了新的文献求助10
4秒前
4秒前
BenchYang完成签到,获得积分10
4秒前
迷人的高烽完成签到,获得积分10
5秒前
9秒前
10秒前
暮商完成签到 ,获得积分10
10秒前
11秒前
高c完成签到,获得积分10
11秒前
qq完成签到,获得积分10
11秒前
11秒前
osmanthus应助青羽凌雪采纳,获得10
12秒前
在水一方应助二十一采纳,获得10
12秒前
JCC完成签到,获得积分10
12秒前
慕青应助毛瑞思采纳,获得10
13秒前
13秒前
14秒前
15秒前
灵巧夏青完成签到,获得积分10
15秒前
lplp发布了新的文献求助30
17秒前
研友_EZ1aNZ发布了新的文献求助10
18秒前
19秒前
孤独靖柏完成签到,获得积分10
22秒前
22秒前
萌宝发布了新的文献求助10
22秒前
wy发布了新的文献求助10
23秒前
pengx完成签到,获得积分10
23秒前
24秒前
狂野忆山发布了新的文献求助10
24秒前
湘之灵若完成签到 ,获得积分10
25秒前
wangdake发布了新的文献求助10
26秒前
26秒前
烟花应助张必雨采纳,获得10
27秒前
煜钧发布了新的文献求助10
27秒前
wu完成签到,获得积分10
28秒前
29秒前
bkagyin应助萌宝采纳,获得10
29秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3264055
求助须知:如何正确求助?哪些是违规求助? 2904291
关于积分的说明 8329474
捐赠科研通 2574503
什么是DOI,文献DOI怎么找? 1399136
科研通“疑难数据库(出版商)”最低求助积分说明 654433
邀请新用户注册赠送积分活动 633095