氧化应激
化学
丙二醛
内分泌学
谷胱甘肽
血红素加氧酶
内科学
抗氧化剂
脂肪组织
谷胱甘肽过氧化物酶
免疫印迹
药理学
生物化学
血红素
生物
超氧化物歧化酶
医学
酶
基因
作者
Fen Liu,Meng Feng,Julin Xing,Xinxin Zhou
标识
DOI:10.1016/j.ejphar.2021.174377
摘要
Anemarrhena asphodeloides originated from the rhizome of Liliaceae Anemarrhena asphodeloides. One of the active pharmacological components of Anemarrhena asphodeloides is timosaponin (TSA), which reduces blood lipids and shows antioxidation and anti-inflammatory effects, but its mechanism is unclear. The objective of this study was to investigate the effect of TSA on oxidative stress induced by a long-term high-fat diet in obese rats. Body weight and the obesity index of the rats were measured during the experiment. Total antioxidant capacity (T-AOC), malondialdehyde (MDA), and glutathione peroxidase (GSH-Px) were used to detect oxidative stress indexes in serum and liver tissue. To observe the effect of TSA on the liver and adipose tissue of rats with oxidative stress, hematoxylin & eosin (H&E) staining was used. The p-NF-κB, NAD(P)H: quinone oxidoreductase 1 (NQO-1), Heme oxygenase 1 (HO-1), and Nrf2 in Nrf2/HO-1 and NF-κB pathways were assayed by reverse transcription-polymerase chain reaction (RT-PCR) and Western blot. TSA was found to improve oxidative stress in obese rats by reducing MDA levels and increasing T-AOC and GSH-Px levels. Histological examination revealed that TSA effectively attenuated liver damage and improved obesity in rats. TSA was found to down-regulate the protein level of p-NF-κB and up-regulate the protein level of Nrf2/HO-1. These results suggested that TSA could effectively block inflammation and dyslipidemia in obese rats, thus improving oxidative stress, and its mechanism could be related to the Nrf2/HO-1 and NF-κB pathways.
科研通智能强力驱动
Strongly Powered by AbleSci AI