Dwarf Mongoose Optimization Algorithm

猫鼬 觅食 饲料 生物 生态学 算法 计算机科学
作者
Jeffrey O. Agushaka,Absalom E. Ezugwu,Laith Abualigah
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:391: 114570-114570 被引量:636
标识
DOI:10.1016/j.cma.2022.114570
摘要

This paper proposes a new metaheuristic algorithm called dwarf mongoose optimization algorithm (DMO) to solve the classical and CEC 2020 benchmark functions and 12 continuous/discrete engineering optimization problems. The DMO mimics the foraging behavior of the dwarf mongoose. The restrictive mode of prey capture (feeding) has dramatically affected the mongooses’ social behavior and ecological adaptations to compensate for efficient family nutrition. The compensatory behavioral adaptations of the mongoose are prey size, space utilization, group size, and food provisioning. Three social groups of the dwarf mongoose are used in the proposed algorithm, the alpha group, babysitters, and the scout group. The family forage as a unit, and the alpha female initiates foraging, determines the foraging path, the distance covered, and the sleeping mounds. A certain number of the mongoose population (usually a mixture of males and females) serve as the babysitters. They remain with the young until the group returns at midday or evening. The babysitters are exchanged for the first to forage with the group (exploitation phase). The dwarf mongooses do not build a nest for their young; they move them from one sleeping mound to another and do not return to the previously foraged site. The dwarf mongoose has adopted a seminomadic way of life in a territory large enough to support the entire group (exploration phase). The nomadic behavior prevents overexploitation of a particular area. It also ensures exploration of the whole territory because no previously visited sleeping mound is returned. The performance of the proposed DMO algorithm is compared with seven other algorithms to show its effectiveness in terms of different performance metrics and statistics. In most cases, the near-optimal solutions achieved by the DMO are better than the best solutions obtained by the current state-of-the-art algorithms. Matlab codes of DMO are available at https://www.mathworks.com/matlabcentral/fileexchange/105125-dwarf-mongoose-optimization-algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ty完成签到 ,获得积分10
1秒前
5秒前
6秒前
明亮无颜发布了新的文献求助20
7秒前
香蕉觅云应助辛木采纳,获得10
8秒前
ruyan完成签到,获得积分20
10秒前
jiangqingquan发布了新的文献求助10
11秒前
缓慢的星星完成签到,获得积分10
16秒前
mito完成签到,获得积分10
17秒前
20秒前
可爱的函函应助renzhuo采纳,获得10
21秒前
科研通AI2S应助开放念云采纳,获得10
22秒前
标致绮露发布了新的文献求助10
22秒前
锦云发布了新的文献求助10
24秒前
源源源完成签到 ,获得积分10
26秒前
明亮幻枫发布了新的文献求助100
27秒前
27秒前
今后应助Reano采纳,获得20
28秒前
动听芷完成签到 ,获得积分10
29秒前
隐形曼青应助轻松棉花糖采纳,获得10
29秒前
whyzz发布了新的文献求助10
30秒前
大个应助候默——辛普森采纳,获得10
31秒前
李健应助binyh采纳,获得10
31秒前
2hhhhhh发布了新的文献求助10
33秒前
Jasper应助子期采纳,获得10
33秒前
田様应助SYJ采纳,获得10
34秒前
荣匪发布了新的文献求助10
34秒前
renzhuo完成签到,获得积分20
34秒前
狗狗应助mbf采纳,获得10
40秒前
40秒前
荣匪完成签到,获得积分10
40秒前
科研白小白给猪猪侠的求助进行了留言
41秒前
慕鱼轩关注了科研通微信公众号
41秒前
41秒前
sai完成签到 ,获得积分10
41秒前
tp040900完成签到 ,获得积分10
43秒前
cdercder发布了新的文献求助10
43秒前
45秒前
SYJ发布了新的文献求助10
46秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Synchrotron X-Ray Methods in Clay Science 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3340523
求助须知:如何正确求助?哪些是违规求助? 2968522
关于积分的说明 8633997
捐赠科研通 2648031
什么是DOI,文献DOI怎么找? 1449967
科研通“疑难数据库(出版商)”最低求助积分说明 671609
邀请新用户注册赠送积分活动 660663