已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Dwarf Mongoose Optimization Algorithm

猫鼬 觅食 饲料 生物 生态学 算法 计算机科学
作者
Jeffrey O. Agushaka,Absalom E. Ezugwu,Laith Abualigah
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:391: 114570-114570 被引量:645
标识
DOI:10.1016/j.cma.2022.114570
摘要

This paper proposes a new metaheuristic algorithm called dwarf mongoose optimization algorithm (DMO) to solve the classical and CEC 2020 benchmark functions and 12 continuous/discrete engineering optimization problems. The DMO mimics the foraging behavior of the dwarf mongoose. The restrictive mode of prey capture (feeding) has dramatically affected the mongooses’ social behavior and ecological adaptations to compensate for efficient family nutrition. The compensatory behavioral adaptations of the mongoose are prey size, space utilization, group size, and food provisioning. Three social groups of the dwarf mongoose are used in the proposed algorithm, the alpha group, babysitters, and the scout group. The family forage as a unit, and the alpha female initiates foraging, determines the foraging path, the distance covered, and the sleeping mounds. A certain number of the mongoose population (usually a mixture of males and females) serve as the babysitters. They remain with the young until the group returns at midday or evening. The babysitters are exchanged for the first to forage with the group (exploitation phase). The dwarf mongooses do not build a nest for their young; they move them from one sleeping mound to another and do not return to the previously foraged site. The dwarf mongoose has adopted a seminomadic way of life in a territory large enough to support the entire group (exploration phase). The nomadic behavior prevents overexploitation of a particular area. It also ensures exploration of the whole territory because no previously visited sleeping mound is returned. The performance of the proposed DMO algorithm is compared with seven other algorithms to show its effectiveness in terms of different performance metrics and statistics. In most cases, the near-optimal solutions achieved by the DMO are better than the best solutions obtained by the current state-of-the-art algorithms. Matlab codes of DMO are available at https://www.mathworks.com/matlabcentral/fileexchange/105125-dwarf-mongoose-optimization-algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
星弟完成签到 ,获得积分10
2秒前
duoduo完成签到,获得积分10
4秒前
炎星语完成签到,获得积分10
5秒前
dgxxhl发布了新的文献求助10
5秒前
刘刘刘发布了新的文献求助10
7秒前
7秒前
8秒前
沉潜完成签到,获得积分10
8秒前
ryanfeng完成签到,获得积分0
9秒前
luwenxuan发布了新的文献求助10
13秒前
duoduo发布了新的文献求助10
14秒前
单于笑卉发布了新的文献求助10
14秒前
16秒前
王一g完成签到 ,获得积分10
21秒前
渊渟岳峙完成签到 ,获得积分10
21秒前
隐形的雁完成签到,获得积分10
21秒前
里昂义务完成签到,获得积分10
23秒前
25秒前
淡定靖儿完成签到 ,获得积分10
25秒前
郑蒸日上完成签到,获得积分10
26秒前
xxn完成签到 ,获得积分10
27秒前
稳重岩完成签到 ,获得积分10
27秒前
cara完成签到,获得积分20
28秒前
28秒前
yanyimeng完成签到,获得积分10
29秒前
CodeCraft应助刘刘刘采纳,获得10
32秒前
逍遥小书生完成签到 ,获得积分10
33秒前
里昂义务发布了新的文献求助10
34秒前
两个我完成签到 ,获得积分10
34秒前
单于笑卉完成签到,获得积分10
34秒前
乐观的问兰完成签到 ,获得积分10
35秒前
引商刻羽完成签到 ,获得积分10
37秒前
苹果牌牛仔裤完成签到,获得积分10
39秒前
FengyaoWang完成签到,获得积分10
40秒前
舒适的秋尽完成签到,获得积分10
42秒前
淡淡的薄荷完成签到,获得积分10
44秒前
44秒前
夭夭发布了新的文献求助10
45秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994701
求助须知:如何正确求助?哪些是违规求助? 3534936
关于积分的说明 11266877
捐赠科研通 3274773
什么是DOI,文献DOI怎么找? 1806467
邀请新用户注册赠送积分活动 883316
科研通“疑难数据库(出版商)”最低求助积分说明 809749