超级电容器
材料科学
多孔性
碳纤维
石墨
电导率
电容
比表面积
纳米技术
导电体
电阻率和电导率
储能
化学工程
电极
复合材料
催化作用
化学
复合数
物理化学
功率(物理)
生物化学
工程类
物理
电气工程
量子力学
作者
Huiqian Qi,Feng Xu,Peng Sun,Xiaohuan Qi,Yang Xiao,Wei Zhao,Rakesh Joshi,Fuqiang Huang
标识
DOI:10.1002/ente.202101103
摘要
Hard carbon has attracted great attention for energy storage owing to low cost and extremely high microporosity, however, hindered by its low electrical conductivity. The common strategy to improve the conductivity is through graphitization process which requires temperatures as high as 3000 °C and inevitably destroys the porous structure. Herein, a balance between the specific surface area and electrical conductivity in a 3D porous hard carbon by in situ iron‐catalyzed graphitization process together with the Si–O–Si network is successfully achieved. The Fe can accelerate the localized graphitization at relatively low temperature (1000 °C) to form nanographite domains with enhanced conductivity, while the Si–O–Si network contributes to generating a 3D porous structure. As a result, the optimized hard carbon exhibits a 3D interconnected and hierarchical porous structure with extremely high specific surface area (2075 m 2 g −1 ) and excellent electrical conductivity (12 S cm −1 ) which is comparable with that of artificial graphite. And thus, high capacitance of 315 F g −1 and excellent rate capability (174 F g −1 at 40 A g −1 ) are simultaneously achieved when used as electrodes for supercapacitors. The strategy is promising to build hard carbon materials with well‐tuned properties for high‐performance energy storage.
科研通智能强力驱动
Strongly Powered by AbleSci AI