弹性模量
材料科学
合金
弹性能
弹性(物理)
复合材料
拉伤
热力学
医学
物理
内科学
作者
Quanfeng He,J. G. Wang,Hsin‐An Chen,Zhaoyi Ding,Ziqing Zhou,Lianghua Xiong,Junhua Luan,Jean Pelletier,J.C. Qiao,Qiang Wang,Lei Fan,Yang Ren,Qiaoshi Zeng,C.T. Liu,Chun‐Wei Pao,David J. Srolovitz,Yong Yang
出处
期刊:Nature
[Springer Nature]
日期:2022-02-09
卷期号:602 (7896): 251-257
被引量:108
标识
DOI:10.1038/s41586-021-04309-1
摘要
The development of high-performance ultraelastic metals with superb strength, a large elastic strain limit and temperature-insensitive elastic modulus (Elinvar effect) are important for various industrial applications, from actuators and medical devices to high-precision instruments1,2. The elastic strain limit of bulk crystalline metals is usually less than 1 per cent, owing to dislocation easy gliding. Shape memory alloys3-including gum metals4,5 and strain glass alloys6,7-may attain an elastic strain limit up to several per cent, although this is the result of pseudo-elasticity and is accompanied by large energy dissipation3. Recently, chemically complex alloys, such as 'high-entropy' alloys8, have attracted tremendous research interest owing to their promising properties9-15. In this work we report on a chemically complex alloy with a large atomic size misfit usually unaffordable in conventional alloys. The alloy exhibits a high elastic strain limit (approximately 2 per cent) and a very low internal friction (less than 2 × 10-4) at room temperature. More interestingly, this alloy exhibits an extraordinary Elinvar effect, maintaining near-constant elastic modulus between room temperature and 627 degrees Celsius (900 kelvin), which is, to our knowledge, unmatched by the existing alloys hitherto reported.
科研通智能强力驱动
Strongly Powered by AbleSci AI