A short-term flood prediction based on spatial deep learning network: A case study for Xi County, China

大洪水 计算机科学 深度学习 卷积神经网络 特征(语言学) 洪水预报 卷积(计算机科学) 时间序列 期限(时间) 数据挖掘 人工智能 人工神经网络 机器学习 地理 哲学 物理 考古 量子力学 语言学
作者
Chen Chen,Jiange Jiang,Zhan Liao,Yang Zhou,Hao Wang,Qingqi Pei
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:607: 127535-127535 被引量:18
标识
DOI:10.1016/j.jhydrol.2022.127535
摘要

• A Convolutional Long Short Term Memory Network is used to predict the flood events based on deep learning techniques. • The spatial and time characteristics of floods in China are well modeled to overcome the shortcomings generated by merely relying on time-series analysis. • Different from traditional methods, the hydrological area is gridded into different watersheds for future processing using image processing methods. Floods cause substantial damage across the world every year. Accurate and timely prediction of floods can significantly minimize the loss of life and property. Recently, numerous machine learning models have been used for flood prediction, showing that their performance is preferable to traditional statistical models. However, the existing models neglect the spatial features of floods, which drive flood generation and concentration. In this paper, the area of interest is divided into grids based on longitude and latitude, and the rainfall and discharge collected by stations are combined into tensors according to station coordinates. Different from one-dimensional time series, our input feature is a two-dimensional time series with spatial information. Hence, combining a Convolutional Neural Network (CNN) with a Long Short Term Memory Network (LSTM), we propose the convolution LSTM (ConvLSTM) to extract spatiotemporal features of hydrological information. The methodology is demonstrated using the hydrological data collected at the Xi County stations, located on the Huai River in Henan Province, China. Numerical results indicate that the relative error of arrival time is within 30%, and the relative error of peak discharge is within 20%, satisfying the 2005 Chinese Water Resource Standard on flood prediction permit error. The experiments also show that the ConvLSTM outperforms the recent models in terms of flood arrival time and peak discharge, thereby proving a promising alternative.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
刚刚
刚刚
1秒前
1秒前
liulqyz发布了新的文献求助10
1秒前
寻道图强应助aabbccff采纳,获得30
1秒前
林途发布了新的文献求助10
1秒前
2秒前
ainiowo完成签到,获得积分10
2秒前
简单绯发布了新的文献求助10
2秒前
谷雨茶完成签到,获得积分10
2秒前
2秒前
tao_blue发布了新的文献求助30
2秒前
jyq发布了新的文献求助10
2秒前
天天快乐应助孤傲的静脉采纳,获得10
3秒前
鲤鱼晓瑶发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
BZPL发布了新的文献求助10
4秒前
4秒前
Rebecca发布了新的文献求助10
5秒前
5秒前
huangcx完成签到,获得积分10
5秒前
zsk1122完成签到,获得积分10
5秒前
斯文依白发布了新的文献求助10
6秒前
灵巧的忻完成签到,获得积分10
6秒前
阿花阿花发布了新的文献求助10
6秒前
zl完成签到,获得积分20
7秒前
JamesPei应助小小鱼采纳,获得10
8秒前
完美世界应助xcr采纳,获得10
9秒前
张星星完成签到,获得积分10
9秒前
10秒前
tao_blue完成签到,获得积分10
10秒前
顺颂时祺完成签到,获得积分10
10秒前
卓然发布了新的文献求助10
10秒前
小马哥完成签到,获得积分10
11秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148466
求助须知:如何正确求助?哪些是违规求助? 2799588
关于积分的说明 7836005
捐赠科研通 2456991
什么是DOI,文献DOI怎么找? 1307679
科研通“疑难数据库(出版商)”最低求助积分说明 628245
版权声明 601655