A short-term flood prediction based on spatial deep learning network: A case study for Xi County, China

大洪水 中国 期限(时间) 地质学 环境科学 水文学(农业) 气象学 地理 岩土工程 量子力学 物理 考古
作者
Chen Chen,Jiange Jiang,Zhan Liao,Yang Zhou,Hao Wang,Qingqi Pei
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:607: 127535-127535 被引量:78
标识
DOI:10.1016/j.jhydrol.2022.127535
摘要

• A Convolutional Long Short Term Memory Network is used to predict the flood events based on deep learning techniques. • The spatial and time characteristics of floods in China are well modeled to overcome the shortcomings generated by merely relying on time-series analysis. • Different from traditional methods, the hydrological area is gridded into different watersheds for future processing using image processing methods. Floods cause substantial damage across the world every year. Accurate and timely prediction of floods can significantly minimize the loss of life and property. Recently, numerous machine learning models have been used for flood prediction, showing that their performance is preferable to traditional statistical models. However, the existing models neglect the spatial features of floods, which drive flood generation and concentration. In this paper, the area of interest is divided into grids based on longitude and latitude, and the rainfall and discharge collected by stations are combined into tensors according to station coordinates. Different from one-dimensional time series, our input feature is a two-dimensional time series with spatial information. Hence, combining a Convolutional Neural Network (CNN) with a Long Short Term Memory Network (LSTM), we propose the convolution LSTM (ConvLSTM) to extract spatiotemporal features of hydrological information. The methodology is demonstrated using the hydrological data collected at the Xi County stations, located on the Huai River in Henan Province, China. Numerical results indicate that the relative error of arrival time is within 30%, and the relative error of peak discharge is within 20%, satisfying the 2005 Chinese Water Resource Standard on flood prediction permit error. The experiments also show that the ConvLSTM outperforms the recent models in terms of flood arrival time and peak discharge, thereby proving a promising alternative.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘逸藩完成签到,获得积分10
1秒前
orixero应助漂泊采纳,获得10
1秒前
Jasper应助学术菜鸡123采纳,获得10
3秒前
伶俐安露发布了新的文献求助10
3秒前
英姑应助呆呆熊采纳,获得10
3秒前
4秒前
清修发布了新的文献求助10
5秒前
搜集达人应助lucas采纳,获得10
6秒前
A溶大美噶完成签到,获得积分10
6秒前
清爽的之云完成签到,获得积分10
7秒前
zihanwang应助晚街拾梦采纳,获得10
7秒前
机灵一兰完成签到 ,获得积分10
8秒前
隐形曼青应助lumia采纳,获得10
8秒前
8秒前
10秒前
慕青应助jin采纳,获得10
10秒前
12秒前
12秒前
大模型应助Oo采纳,获得50
12秒前
13秒前
XCXC完成签到,获得积分10
13秒前
13秒前
干净寻冬完成签到,获得积分10
15秒前
15秒前
15秒前
大个应助黄玉珠采纳,获得10
15秒前
小卫卫完成签到,获得积分10
16秒前
17秒前
18秒前
19秒前
19秒前
鸣笛应助zying采纳,获得20
20秒前
zhhhh03完成签到,获得积分10
20秒前
Unicorn完成签到 ,获得积分10
21秒前
zihanwang应助shifeng采纳,获得10
21秒前
称心冬云发布了新的文献求助10
22秒前
lucas发布了新的文献求助10
22秒前
24秒前
萤火之森发布了新的文献求助10
24秒前
工商第一发布了新的文献求助10
24秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998235
求助须知:如何正确求助?哪些是违规求助? 3537729
关于积分的说明 11272361
捐赠科研通 3276854
什么是DOI,文献DOI怎么找? 1807154
邀请新用户注册赠送积分活动 883757
科研通“疑难数据库(出版商)”最低求助积分说明 810014