A short-term flood prediction based on spatial deep learning network: A case study for Xi County, China

大洪水 中国 期限(时间) 地质学 环境科学 水文学(农业) 气象学 地理 岩土工程 量子力学 物理 考古
作者
Chen Chen,Jiange Jiang,Zhan Liao,Yang Zhou,Hao Wang,Qingqi Pei
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:607: 127535-127535 被引量:78
标识
DOI:10.1016/j.jhydrol.2022.127535
摘要

• A Convolutional Long Short Term Memory Network is used to predict the flood events based on deep learning techniques. • The spatial and time characteristics of floods in China are well modeled to overcome the shortcomings generated by merely relying on time-series analysis. • Different from traditional methods, the hydrological area is gridded into different watersheds for future processing using image processing methods. Floods cause substantial damage across the world every year. Accurate and timely prediction of floods can significantly minimize the loss of life and property. Recently, numerous machine learning models have been used for flood prediction, showing that their performance is preferable to traditional statistical models. However, the existing models neglect the spatial features of floods, which drive flood generation and concentration. In this paper, the area of interest is divided into grids based on longitude and latitude, and the rainfall and discharge collected by stations are combined into tensors according to station coordinates. Different from one-dimensional time series, our input feature is a two-dimensional time series with spatial information. Hence, combining a Convolutional Neural Network (CNN) with a Long Short Term Memory Network (LSTM), we propose the convolution LSTM (ConvLSTM) to extract spatiotemporal features of hydrological information. The methodology is demonstrated using the hydrological data collected at the Xi County stations, located on the Huai River in Henan Province, China. Numerical results indicate that the relative error of arrival time is within 30%, and the relative error of peak discharge is within 20%, satisfying the 2005 Chinese Water Resource Standard on flood prediction permit error. The experiments also show that the ConvLSTM outperforms the recent models in terms of flood arrival time and peak discharge, thereby proving a promising alternative.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
小城故事和冰雨完成签到,获得积分10
13秒前
SCI完成签到,获得积分10
15秒前
故意的花瓣完成签到 ,获得积分10
17秒前
领导范儿应助Junejie采纳,获得10
17秒前
Lrcx完成签到 ,获得积分10
19秒前
在水一方应助一个小胖子采纳,获得10
19秒前
大模型应助zjq采纳,获得10
28秒前
luobote完成签到 ,获得积分10
31秒前
zhangj696完成签到,获得积分10
34秒前
曾利凤完成签到 ,获得积分10
34秒前
魁梧的觅松完成签到 ,获得积分10
35秒前
游戏那我可徐完成签到 ,获得积分10
36秒前
XDF完成签到 ,获得积分10
40秒前
neu_zxy1991完成签到,获得积分10
51秒前
田様应助颤北斗采纳,获得10
55秒前
整齐豆芽完成签到 ,获得积分10
56秒前
Hanoi347应助科研通管家采纳,获得10
58秒前
汉堡包应助科研通管家采纳,获得10
58秒前
浮游应助科研通管家采纳,获得10
58秒前
赘婿应助科研通管家采纳,获得10
58秒前
58秒前
浮游应助科研通管家采纳,获得10
58秒前
58秒前
wanci应助科研通管家采纳,获得30
58秒前
58秒前
58秒前
Hanoi347应助科研通管家采纳,获得10
58秒前
感冒药完成签到 ,获得积分10
1分钟前
刚睡醒完成签到,获得积分10
1分钟前
理想三寻完成签到,获得积分10
1分钟前
小南极完成签到,获得积分10
1分钟前
1分钟前
颤北斗发布了新的文献求助10
1分钟前
郭义敏完成签到,获得积分0
1分钟前
科研通AI2S应助兴奋的新蕾采纳,获得10
1分钟前
Ashley完成签到 ,获得积分10
1分钟前
苏苏喂苏苏完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
落红雨完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498623
求助须知:如何正确求助?哪些是违规求助? 4595798
关于积分的说明 14449800
捐赠科研通 4528763
什么是DOI,文献DOI怎么找? 2481719
邀请新用户注册赠送积分活动 1465732
关于科研通互助平台的介绍 1438561