A short-term flood prediction based on spatial deep learning network: A case study for Xi County, China

大洪水 中国 期限(时间) 地质学 环境科学 水文学(农业) 气象学 地理 岩土工程 量子力学 物理 考古
作者
Chen Chen,Jiange Jiang,Zhan Liao,Yang Zhou,Hao Wang,Qingqi Pei
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:607: 127535-127535 被引量:78
标识
DOI:10.1016/j.jhydrol.2022.127535
摘要

• A Convolutional Long Short Term Memory Network is used to predict the flood events based on deep learning techniques. • The spatial and time characteristics of floods in China are well modeled to overcome the shortcomings generated by merely relying on time-series analysis. • Different from traditional methods, the hydrological area is gridded into different watersheds for future processing using image processing methods. Floods cause substantial damage across the world every year. Accurate and timely prediction of floods can significantly minimize the loss of life and property. Recently, numerous machine learning models have been used for flood prediction, showing that their performance is preferable to traditional statistical models. However, the existing models neglect the spatial features of floods, which drive flood generation and concentration. In this paper, the area of interest is divided into grids based on longitude and latitude, and the rainfall and discharge collected by stations are combined into tensors according to station coordinates. Different from one-dimensional time series, our input feature is a two-dimensional time series with spatial information. Hence, combining a Convolutional Neural Network (CNN) with a Long Short Term Memory Network (LSTM), we propose the convolution LSTM (ConvLSTM) to extract spatiotemporal features of hydrological information. The methodology is demonstrated using the hydrological data collected at the Xi County stations, located on the Huai River in Henan Province, China. Numerical results indicate that the relative error of arrival time is within 30%, and the relative error of peak discharge is within 20%, satisfying the 2005 Chinese Water Resource Standard on flood prediction permit error. The experiments also show that the ConvLSTM outperforms the recent models in terms of flood arrival time and peak discharge, thereby proving a promising alternative.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一个漂流瓶完成签到,获得积分10
刚刚
别致的小五完成签到 ,获得积分10
刚刚
优雅的千雁完成签到,获得积分10
刚刚
Sleven完成签到,获得积分10
1秒前
1秒前
2秒前
BinSir完成签到 ,获得积分10
2秒前
liuyq0501完成签到,获得积分0
2秒前
cx完成签到,获得积分10
2秒前
小李完成签到 ,获得积分10
3秒前
Kinspact发布了新的文献求助10
4秒前
害羞的天真完成签到 ,获得积分10
5秒前
ding应助小陈采纳,获得10
5秒前
5秒前
wzhang发布了新的文献求助10
6秒前
叮当发布了新的文献求助10
7秒前
mayberichard完成签到,获得积分10
7秒前
完美世界应助mengli采纳,获得10
7秒前
9秒前
计划逃跑完成签到 ,获得积分10
13秒前
Java完成签到,获得积分10
14秒前
乐乐应助叮当采纳,获得10
14秒前
drjyang完成签到,获得积分10
15秒前
luoyukejing完成签到,获得积分10
17秒前
19秒前
量子星尘发布了新的文献求助10
20秒前
yanmh完成签到,获得积分10
22秒前
Zero完成签到 ,获得积分10
23秒前
yk应助小陈采纳,获得10
23秒前
Ruuo616完成签到 ,获得积分10
24秒前
LXZ完成签到,获得积分10
28秒前
她的城完成签到,获得积分0
31秒前
林夏完成签到,获得积分10
35秒前
拾壹完成签到,获得积分10
37秒前
米博士完成签到,获得积分10
38秒前
Much完成签到 ,获得积分10
38秒前
weiwei完成签到 ,获得积分10
40秒前
李李李完成签到,获得积分10
41秒前
熊猫完成签到 ,获得积分10
43秒前
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651424
求助须知:如何正确求助?哪些是违规求助? 4784822
关于积分的说明 15053799
捐赠科研通 4810090
什么是DOI,文献DOI怎么找? 2572957
邀请新用户注册赠送积分活动 1528830
关于科研通互助平台的介绍 1487848