Multiscale feature U-Net for remote sensing image segmentation

计算机科学 分割 特征提取 人工智能 特征(语言学) 过度拟合 图像分割 模式识别(心理学) 编码器 遥感 卷积(计算机科学) 计算机视觉 人工神经网络 地理 语言学 操作系统 哲学
作者
Youhua Wei,Xuzhi Liu,Jingxiong Lei,Ruihan Yue,Jun Feng
出处
期刊:Journal of Applied Remote Sensing [SPIE - International Society for Optical Engineering]
卷期号:16 (01) 被引量:6
标识
DOI:10.1117/1.jrs.16.016507
摘要

The segmentation and extraction of buildings in high-resolution remote sensing images has good application prospects in military, civil, and other fields. With a depth encoder–decoder structure, U-Net is a frequently used model for high-precision image segmentation. However, the design of U-Net makes it hard to retain the detailed information of edges when processing the building segmentation. Specifically, the low-level features extracted from the shallow layer and the abstract features extracted from the deep layer cannot be completely merged, resulting in inaccurate segmentation. In response to this problem, we design a new multiscale feature extraction module that extracts target information through three convolution kernels of different scales. Taking U-Net as the baseline, by replacing skip connections with this module, we propose a multiscale feature extraction U-Net. This method can perform secondary feature extraction on the shallow feature information in the skip connection, refine the detailed information, and narrow the semantic gap between the low-level features and high-level features. It can not only improve the ability of the network to extract multiscale feature information, from a larger range to more layers to extract the edge detail information of the building in the remote sensing image, but also increase the number of skip connections to reduce network overfitting. Experimental results on Massachusetts remote sensing data and Massachusetts building data show that the method proposed offers significant improvement in terms of precision and accuracy compared with the methods full convolutional network, U-Net, SegNet, and high-resolution network, with an F1 score of 88.73%, mean IoU of 91.15%, precision of 89.74%, accuracy of 97.36%, and recall of 87.74%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助刁弘睿采纳,获得10
刚刚
刚刚
刚刚
缥缈海云完成签到,获得积分10
刚刚
1秒前
斯文败类应助沙场秋点兵采纳,获得10
2秒前
123完成签到,获得积分10
2秒前
3秒前
无辜问玉发布了新的文献求助10
3秒前
3秒前
4秒前
谨慎乐安发布了新的文献求助10
4秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
缥缈海云发布了新的文献求助10
7秒前
mylaodao发布了新的文献求助10
7秒前
8秒前
chen完成签到,获得积分10
9秒前
拾贰月发布了新的文献求助10
9秒前
俊杰完成签到,获得积分10
10秒前
阿菜完成签到,获得积分10
10秒前
wanghao完成签到,获得积分20
10秒前
善学以致用应助songjiatian采纳,获得10
11秒前
12秒前
12秒前
善学以致用应助追忆淮采纳,获得10
13秒前
Hello应助靓丽凝海采纳,获得10
13秒前
13秒前
毛笑冉完成签到,获得积分10
13秒前
fine发布了新的文献求助10
13秒前
14秒前
无辜问玉完成签到,获得积分10
15秒前
15秒前
CodeCraft应助SJW采纳,获得10
16秒前
指尖的阿里阿德涅完成签到,获得积分10
16秒前
July完成签到,获得积分10
16秒前
abcdqqqqqqqqqqqq应助大橘子采纳,获得10
17秒前
17秒前
芋圆完成签到,获得积分10
17秒前
科目三应助yao啦啦采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718021
求助须知:如何正确求助?哪些是违规求助? 5250051
关于积分的说明 15284272
捐赠科研通 4868198
什么是DOI,文献DOI怎么找? 2614063
邀请新用户注册赠送积分活动 1563973
关于科研通互助平台的介绍 1521425