Multiscale feature U-Net for remote sensing image segmentation

计算机科学 分割 特征提取 人工智能 特征(语言学) 过度拟合 图像分割 模式识别(心理学) 编码器 遥感 卷积(计算机科学) 计算机视觉 人工神经网络 地理 语言学 操作系统 哲学
作者
Youhua Wei,Xuzhi Liu,Jingxiong Lei,Ruihan Yue,Jun Feng
出处
期刊:Journal of Applied Remote Sensing [SPIE]
卷期号:16 (01) 被引量:6
标识
DOI:10.1117/1.jrs.16.016507
摘要

The segmentation and extraction of buildings in high-resolution remote sensing images has good application prospects in military, civil, and other fields. With a depth encoder–decoder structure, U-Net is a frequently used model for high-precision image segmentation. However, the design of U-Net makes it hard to retain the detailed information of edges when processing the building segmentation. Specifically, the low-level features extracted from the shallow layer and the abstract features extracted from the deep layer cannot be completely merged, resulting in inaccurate segmentation. In response to this problem, we design a new multiscale feature extraction module that extracts target information through three convolution kernels of different scales. Taking U-Net as the baseline, by replacing skip connections with this module, we propose a multiscale feature extraction U-Net. This method can perform secondary feature extraction on the shallow feature information in the skip connection, refine the detailed information, and narrow the semantic gap between the low-level features and high-level features. It can not only improve the ability of the network to extract multiscale feature information, from a larger range to more layers to extract the edge detail information of the building in the remote sensing image, but also increase the number of skip connections to reduce network overfitting. Experimental results on Massachusetts remote sensing data and Massachusetts building data show that the method proposed offers significant improvement in terms of precision and accuracy compared with the methods full convolutional network, U-Net, SegNet, and high-resolution network, with an F1 score of 88.73%, mean IoU of 91.15%, precision of 89.74%, accuracy of 97.36%, and recall of 87.74%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Rondab应助jessie采纳,获得10
1秒前
1秒前
香蕉觅云应助愤怒的稀采纳,获得10
2秒前
3秒前
3秒前
4秒前
5秒前
7秒前
7秒前
图治发布了新的文献求助10
7秒前
8秒前
麦子发布了新的文献求助10
9秒前
lijia3发布了新的文献求助10
9秒前
xinyueyue发布了新的文献求助10
11秒前
hututu完成签到,获得积分20
11秒前
zhangyu应助Lin采纳,获得10
12秒前
shuwu完成签到,获得积分20
12秒前
英俊的铭应助chenbo采纳,获得10
13秒前
13秒前
bmj完成签到 ,获得积分10
13秒前
醒不来的猫完成签到,获得积分10
13秒前
shuwu发布了新的文献求助10
14秒前
15秒前
翟威完成签到 ,获得积分10
15秒前
ding应助tp040900采纳,获得10
15秒前
16秒前
kunny完成签到 ,获得积分10
17秒前
19秒前
NexusExplorer应助如意果汁采纳,获得10
19秒前
20秒前
bkagyin应助含蓄的易绿采纳,获得10
20秒前
心灵美千秋完成签到 ,获得积分10
20秒前
沙福林发布了新的文献求助10
22秒前
笑点低的豌豆完成签到,获得积分10
22秒前
22秒前
翟威发布了新的文献求助10
23秒前
77发布了新的文献求助10
24秒前
afeifei完成签到,获得积分10
25秒前
26秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992868
求助须知:如何正确求助?哪些是违规求助? 3533665
关于积分的说明 11263418
捐赠科研通 3273432
什么是DOI,文献DOI怎么找? 1806029
邀请新用户注册赠送积分活动 882931
科研通“疑难数据库(出版商)”最低求助积分说明 809629