Artificial Intelligence-Based Stethoscope for the Diagnosis of Aortic Stenosis

听诊器 医学 听诊 内科学 狭窄 心脏病学 诊断准确性 放射科
作者
Tamer Ghanayim,Lior Lupu,Sivan Naveh,Noa Bachner-Hinenzon,Doron Adler,Salim Adawi,Shmuel Banai,Avinoam Shiran
出处
期刊:The American Journal of Medicine [Elsevier]
卷期号:135 (9): 1124-1133 被引量:22
标识
DOI:10.1016/j.amjmed.2022.04.032
摘要

The diagnostic accuracy of the stethoscope is limited and highly dependent on clinical expertise. Our purpose was to develop an electronic stethoscope, based on artificial intelligence (AI) and infrasound, for the diagnosis of aortic stenosis (AS).We used an electronic stethoscope (VoqX; Sanolla, Nesher, Israel) with subsonic capabilities and acoustic range of 3-2000 Hz. The study had 2 stages. In the first stage, using the VoqX, we recorded heart sounds from 100 patients referred for echocardiography (derivation group), 50 with moderate or severe AS and 50 without valvular disease. An AI-based supervised learning model was applied to the auscultation data from the first 100 patients used for training, to construct a diagnostic algorithm that was then tested on a validation group (50 other patients, 25 with AS and 25 without AS). In the second stage, conducted at a different medical center, we tested the device on 106 additional patients referred for echocardiography, which included patients with other valvular diseases.Using data collected at the aortic and pulmonic auscultation points from the derivation group, the AI-based algorithm identified moderate or severe AS with 86% sensitivity and 100% specificity. When applied to the validation group, the sensitivity was 84% and specificity 92%; and in the additional testing group, 90% and 84%, respectively. The sensitivity was 55% for mild, 76% for moderate, and 93% for severe AS.Our initial findings show that an AI-based stethoscope with infrasound capabilities can accurately diagnose AS. AI-based electronic auscultation is a promising new tool for automatic screening and diagnosis of valvular heart disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kc135完成签到,获得积分10
2秒前
半世完成签到,获得积分20
2秒前
pokikiii完成签到,获得积分10
2秒前
iwhsgfes完成签到,获得积分10
3秒前
仓颉关注了科研通微信公众号
3秒前
4秒前
5秒前
5秒前
清明雨上完成签到,获得积分10
5秒前
cxh完成签到,获得积分10
6秒前
FashionBoy应助pokikiii采纳,获得10
7秒前
无花果应助junya采纳,获得10
8秒前
欣慰的茉莉完成签到 ,获得积分10
8秒前
9秒前
K007完成签到 ,获得积分10
9秒前
10秒前
11秒前
11秒前
ryan完成签到,获得积分10
11秒前
xxxidgkris应助snow采纳,获得20
11秒前
研友_VZG7GZ应助粉色娇嫩采纳,获得10
14秒前
今后应助iwhsgfes采纳,获得10
14秒前
今后应助薄桉采纳,获得10
15秒前
15秒前
15秒前
XuanZhang发布了新的文献求助10
17秒前
18秒前
19秒前
19秒前
英姑应助大力出奇迹采纳,获得10
19秒前
Greetdawn完成签到,获得积分10
20秒前
20秒前
20秒前
22秒前
stories完成签到,获得积分10
22秒前
Hanaooooo发布了新的文献求助10
23秒前
呱呱完成签到,获得积分10
23秒前
ML发布了新的文献求助10
24秒前
cc发布了新的文献求助10
24秒前
25秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137977
求助须知:如何正确求助?哪些是违规求助? 2788907
关于积分的说明 7789001
捐赠科研通 2445272
什么是DOI,文献DOI怎么找? 1300255
科研通“疑难数据库(出版商)”最低求助积分说明 625878
版权声明 601046