Nafion公司
流动电池
膜
化学
无机化学
离子交换
氧化还原
离子键合
化学工程
离子电导率
离子
电化学
电极
有机化学
电解质
物理化学
工程类
生物化学
作者
Dabin Han,Sangaraju Shanmugam
标识
DOI:10.1016/j.jpowsour.2022.231637
摘要
Zinc-bromine redox flow batteries (Zn/Br2 RFBs) are gaining attention as a next-generation energy storage system with the advantages of a cost-effective redox couple material price, high output, and high energy density. However, bromine (Br2) crossover through a commercial porous membrane causes self-discharge to lower the capacity retention. Nafion, a commercial ion exchange membrane, can lower the crossover but has low voltage efficiency due to high membrane resistance. To address this trade-off, the amphoteric functionalized silica (Am-SiO2) is introduced into the Nafion membrane (Nafion/Am-SiO2). It suppresses the crossover of active materials such as Br2 and polybromide (Brn−) and possesses high ionic conductivity due to the quaternary ammonium and sulfonic groups on the Am-SiO2 surface. In addition, increasing the water content in the membrane prevents the expansion of the water cluster size, which could help balance bi-ionic transport. As a result, the composite membrane showed 83.3 and 19.0 times higher ion selectivity than the commercial porous membrane (SF600) and ion-exchange membrane (NRE-212). Compared to SF600 and NRE-212, the energy efficiency of Nafion/Am-SiO2 was improved by 4.2 and 6.4%, respectively. Balancing anion and cation transport can be successfully applied in Zn/Br2 RFBs by introducing an amphoteric group into an ion-exchange membrane.
科研通智能强力驱动
Strongly Powered by AbleSci AI