亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Low‐rank fusion convolutional neural network for prediction of remission after stereotactic radiosurgery in patients with acromegaly: a proof‐of‐concept study

放射外科 医学 置信区间 四分位间距 危险系数 队列 内科学 核医学 放射科 放射治疗
作者
Nidan Qiao,Da-min Yu,Guoqing Wu,Qilin Zhang,Boyuan Yao,Min He,Hongying Ye,Zhaoyun Zhang,Yongfei Wang,Hanfeng Wu,Yao Zhao,Jinhua Yu
标识
DOI:10.1002/path.5974
摘要

Artificial intelligence approaches to analyze pathological images (pathomic) for outcome prediction have not been sufficiently considered in the field of pituitary research. A total of 5,504 hematoxylin & eosin-stained pathology image tiles from 58 acromegalic patients with a good or poor outcome were integrated with other clinical and genetic information to train a low-rank fusion convolutional neural network (LFCNN). The model was externally validated in 1,536 patches from an external cohort. The primary outcome was the time to the first endocrine remission after stereotactic radiosurgery (SRS). The median time of initial endocrine remission was 43 months (interquartile range [IQR]: 13-60 months) after SRS, and the 24-month initial cumulative remission rate was 57.9% (IQR: 46.4-72.3%). The patient-wise accuracy of the LFCNN model in predicting the primary outcome was 92.9% in the internal test dataset, and the sensitivity and specificity were 87.5 and 100.0%, respectively. The LFCNN model was a strong predictor of initial cumulative remission in the training cohort (hazard ratio [HR] 9.58, 95% confidence interval [CI] 3.89-23.59; p < 0.001) and was higher than that of established prognostic markers. The predictive value of the LFCNN model was further validated in an external cohort (HR 9.06, 95% CI 1.14-72.25; p = 0.012). In this proof-of-concept study, clinically and genetically useful prognostic markers were integrated with digital images to predict endocrine outcomes after SRS in patients with active acromegaly. The model considerably outperformed established prognostic markers and can potentially be used by clinicians to improve decision-making regarding adjuvant treatment choices. © 2022 The Pathological Society of Great Britain and Ireland.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
27秒前
桥西小河完成签到 ,获得积分10
39秒前
脑洞疼应助怕孤独的怀莲采纳,获得30
58秒前
SUNny发布了新的文献求助10
1分钟前
有米爱吃又桂卷完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
SciGPT应助juan采纳,获得10
1分钟前
Bluestar完成签到,获得积分10
1分钟前
SUNny发布了新的文献求助10
2分钟前
2分钟前
大模型应助George采纳,获得10
2分钟前
Lucas应助唐晓秦采纳,获得10
2分钟前
orixero应助纯真的傲玉采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
星辰大海应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
juan发布了新的文献求助10
2分钟前
帅气书白完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
唐晓秦发布了新的文献求助10
3分钟前
纯真的傲玉完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
顾矜应助SUNny采纳,获得10
3分钟前
东溟渔夫发布了新的文献求助10
4分钟前
河堤完成签到 ,获得积分10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664503
求助须知:如何正确求助?哪些是违规求助? 4863398
关于积分的说明 15107870
捐赠科研通 4823133
什么是DOI,文献DOI怎么找? 2581971
邀请新用户注册赠送积分活动 1536081
关于科研通互助平台的介绍 1494500