Low‐rank fusion convolutional neural network for prediction of remission after stereotactic radiosurgery in patients with acromegaly: a proof‐of‐concept study

放射外科 医学 置信区间 四分位间距 危险系数 队列 内科学 核医学 放射科 放射治疗
作者
Nidan Qiao,Da-min Yu,Guoqing Wu,Qilin Zhang,Boyuan Yao,Min He,Hongying Ye,Zhaoyun Zhang,Yongfei Wang,Hanfeng Wu,Yao Zhao,Jinhua Yu
标识
DOI:10.1002/path.5974
摘要

Artificial intelligence approaches to analyze pathological images (pathomic) for outcome prediction have not been sufficiently considered in the field of pituitary research. A total of 5,504 hematoxylin & eosin-stained pathology image tiles from 58 acromegalic patients with a good or poor outcome were integrated with other clinical and genetic information to train a low-rank fusion convolutional neural network (LFCNN). The model was externally validated in 1,536 patches from an external cohort. The primary outcome was the time to the first endocrine remission after stereotactic radiosurgery (SRS). The median time of initial endocrine remission was 43 months (interquartile range [IQR]: 13-60 months) after SRS, and the 24-month initial cumulative remission rate was 57.9% (IQR: 46.4-72.3%). The patient-wise accuracy of the LFCNN model in predicting the primary outcome was 92.9% in the internal test dataset, and the sensitivity and specificity were 87.5 and 100.0%, respectively. The LFCNN model was a strong predictor of initial cumulative remission in the training cohort (hazard ratio [HR] 9.58, 95% confidence interval [CI] 3.89-23.59; p < 0.001) and was higher than that of established prognostic markers. The predictive value of the LFCNN model was further validated in an external cohort (HR 9.06, 95% CI 1.14-72.25; p = 0.012). In this proof-of-concept study, clinically and genetically useful prognostic markers were integrated with digital images to predict endocrine outcomes after SRS in patients with active acromegaly. The model considerably outperformed established prognostic markers and can potentially be used by clinicians to improve decision-making regarding adjuvant treatment choices. © 2022 The Pathological Society of Great Britain and Ireland.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
穆青完成签到 ,获得积分10
1秒前
1秒前
2秒前
爱吃饭的黄哥完成签到,获得积分10
2秒前
3秒前
3秒前
Hello应助斯可采纳,获得10
4秒前
pengxue完成签到 ,获得积分10
5秒前
7秒前
8秒前
风中听枫完成签到 ,获得积分10
8秒前
9秒前
10秒前
Jasper应助欢呼的霸采纳,获得10
11秒前
无限猕猴桃应助Japrin采纳,获得20
13秒前
虚幻的雪巧完成签到,获得积分10
13秒前
和谐板栗完成签到 ,获得积分10
13秒前
方hh完成签到,获得积分10
13秒前
Mera发布了新的文献求助10
13秒前
14秒前
笛卡尔完成签到,获得积分10
14秒前
14秒前
NexusExplorer应助科研通管家采纳,获得10
16秒前
思源应助科研通管家采纳,获得10
16秒前
16秒前
yar应助科研通管家采纳,获得10
16秒前
16秒前
甜蜜的阳光完成签到 ,获得积分10
16秒前
16秒前
心灵美的修洁完成签到 ,获得积分10
18秒前
研友_LwlAgn发布了新的文献求助10
19秒前
20秒前
baby完成签到,获得积分10
21秒前
22秒前
22秒前
豪哥大大发布了新的文献求助10
23秒前
11111发布了新的文献求助10
25秒前
27秒前
繁荣的代秋完成签到 ,获得积分10
27秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304342
求助须知:如何正确求助?哪些是违规求助? 2938315
关于积分的说明 8488166
捐赠科研通 2612797
什么是DOI,文献DOI怎么找? 1426863
科研通“疑难数据库(出版商)”最低求助积分说明 662879
邀请新用户注册赠送积分活动 647374