Low‐rank fusion convolutional neural network for prediction of remission after stereotactic radiosurgery in patients with acromegaly: a proof‐of‐concept study

放射外科 医学 置信区间 四分位间距 危险系数 队列 内科学 核医学 放射科 放射治疗
作者
Nidan Qiao,Da-min Yu,Guoqing Wu,Qilin Zhang,Boyuan Yao,Min He,Hongying Ye,Zhaoyun Zhang,Yongfei Wang,Hanfeng Wu,Yao Zhao,Jinhua Yu
标识
DOI:10.1002/path.5974
摘要

Artificial intelligence approaches to analyze pathological images (pathomic) for outcome prediction have not been sufficiently considered in the field of pituitary research. A total of 5,504 hematoxylin & eosin-stained pathology image tiles from 58 acromegalic patients with a good or poor outcome were integrated with other clinical and genetic information to train a low-rank fusion convolutional neural network (LFCNN). The model was externally validated in 1,536 patches from an external cohort. The primary outcome was the time to the first endocrine remission after stereotactic radiosurgery (SRS). The median time of initial endocrine remission was 43 months (interquartile range [IQR]: 13-60 months) after SRS, and the 24-month initial cumulative remission rate was 57.9% (IQR: 46.4-72.3%). The patient-wise accuracy of the LFCNN model in predicting the primary outcome was 92.9% in the internal test dataset, and the sensitivity and specificity were 87.5 and 100.0%, respectively. The LFCNN model was a strong predictor of initial cumulative remission in the training cohort (hazard ratio [HR] 9.58, 95% confidence interval [CI] 3.89-23.59; p < 0.001) and was higher than that of established prognostic markers. The predictive value of the LFCNN model was further validated in an external cohort (HR 9.06, 95% CI 1.14-72.25; p = 0.012). In this proof-of-concept study, clinically and genetically useful prognostic markers were integrated with digital images to predict endocrine outcomes after SRS in patients with active acromegaly. The model considerably outperformed established prognostic markers and can potentially be used by clinicians to improve decision-making regarding adjuvant treatment choices. © 2022 The Pathological Society of Great Britain and Ireland.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
雪满头完成签到,获得积分0
2秒前
3秒前
4秒前
sikaixue发布了新的文献求助10
4秒前
可爱的函函应助tttt采纳,获得10
5秒前
知了完成签到 ,获得积分10
6秒前
上官若男应助ri_290采纳,获得10
7秒前
8秒前
orixero应助lwl666采纳,获得10
8秒前
远航完成签到,获得积分10
9秒前
白茶完成签到 ,获得积分10
10秒前
静默发布了新的文献求助10
10秒前
shinn发布了新的文献求助10
10秒前
Lucas应助小巧富采纳,获得10
10秒前
精明问筠完成签到 ,获得积分20
11秒前
JCX发布了新的文献求助10
12秒前
SciGPT应助xinggui采纳,获得10
12秒前
Hello应助apple采纳,获得30
12秒前
End发布了新的文献求助10
14秒前
16秒前
汉堡包应助sikaixue采纳,获得10
18秒前
JamesPei应助shinn采纳,获得10
18秒前
18秒前
19秒前
20秒前
科研通AI5应助说几句采纳,获得10
21秒前
22秒前
22秒前
HoydeA发布了新的文献求助10
23秒前
tttt发布了新的文献求助10
23秒前
Felix发布了新的文献求助10
25秒前
英俊的铭应助鸿鲤采纳,获得10
25秒前
lwl666发布了新的文献求助10
25秒前
ukgiuhilo发布了新的文献求助10
26秒前
糖果色完成签到,获得积分10
26秒前
索兰黛尔完成签到,获得积分10
29秒前
无花果应助ll采纳,获得10
30秒前
31秒前
烟花应助科研通管家采纳,获得10
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967974
求助须知:如何正确求助?哪些是违规求助? 3513037
关于积分的说明 11166022
捐赠科研通 3248121
什么是DOI,文献DOI怎么找? 1794108
邀请新用户注册赠送积分活动 874854
科研通“疑难数据库(出版商)”最低求助积分说明 804602