Low‐rank fusion convolutional neural network for prediction of remission after stereotactic radiosurgery in patients with acromegaly: a proof‐of‐concept study

放射外科 医学 置信区间 四分位间距 危险系数 队列 内科学 核医学 放射科 放射治疗
作者
Nidan Qiao,Da-min Yu,Guoqing Wu,Qilin Zhang,Boyuan Yao,Min He,Hongying Ye,Zhaoyun Zhang,Yongfei Wang,Hanfeng Wu,Yao Zhao,Jinhua Yu
标识
DOI:10.1002/path.5974
摘要

Artificial intelligence approaches to analyze pathological images (pathomic) for outcome prediction have not been sufficiently considered in the field of pituitary research. A total of 5,504 hematoxylin & eosin-stained pathology image tiles from 58 acromegalic patients with a good or poor outcome were integrated with other clinical and genetic information to train a low-rank fusion convolutional neural network (LFCNN). The model was externally validated in 1,536 patches from an external cohort. The primary outcome was the time to the first endocrine remission after stereotactic radiosurgery (SRS). The median time of initial endocrine remission was 43 months (interquartile range [IQR]: 13-60 months) after SRS, and the 24-month initial cumulative remission rate was 57.9% (IQR: 46.4-72.3%). The patient-wise accuracy of the LFCNN model in predicting the primary outcome was 92.9% in the internal test dataset, and the sensitivity and specificity were 87.5 and 100.0%, respectively. The LFCNN model was a strong predictor of initial cumulative remission in the training cohort (hazard ratio [HR] 9.58, 95% confidence interval [CI] 3.89-23.59; p < 0.001) and was higher than that of established prognostic markers. The predictive value of the LFCNN model was further validated in an external cohort (HR 9.06, 95% CI 1.14-72.25; p = 0.012). In this proof-of-concept study, clinically and genetically useful prognostic markers were integrated with digital images to predict endocrine outcomes after SRS in patients with active acromegaly. The model considerably outperformed established prognostic markers and can potentially be used by clinicians to improve decision-making regarding adjuvant treatment choices. © 2022 The Pathological Society of Great Britain and Ireland.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
饕餮发布了新的文献求助10
刚刚
1秒前
1秒前
wqy完成签到,获得积分10
1秒前
犹豫的戎完成签到,获得积分20
1秒前
狗子完成签到 ,获得积分10
2秒前
CodeCraft应助小小飞采纳,获得10
2秒前
JamesPei应助JUSTs0so采纳,获得10
4秒前
Beth完成签到,获得积分10
4秒前
粥粥发布了新的文献求助10
5秒前
5秒前
庞威完成签到 ,获得积分10
5秒前
6秒前
吕春雨完成签到,获得积分10
6秒前
Grayball应助ccc采纳,获得10
6秒前
7秒前
7秒前
勖勖完成签到,获得积分10
7秒前
邵裘发布了新的文献求助10
7秒前
7秒前
饕餮完成签到,获得积分10
8秒前
9秒前
wangg发布了新的文献求助10
9秒前
大个应助勤恳的依丝采纳,获得10
10秒前
星星发布了新的文献求助10
10秒前
spray发布了新的文献求助30
10秒前
LZJ完成签到,获得积分10
10秒前
11秒前
YE发布了新的文献求助30
11秒前
MHB应助叫滚滚采纳,获得10
12秒前
wzxxxx发布了新的文献求助10
12秒前
斯文败类应助勤劳傲晴采纳,获得10
13秒前
shilong.yang发布了新的文献求助10
13秒前
momo完成签到,获得积分10
14秒前
wxp_bioinfo完成签到,获得积分10
15秒前
15秒前
桐桐应助wangg采纳,获得10
15秒前
Jun完成签到,获得积分10
16秒前
芝士的酒发布了新的文献求助50
16秒前
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808