Low‐rank fusion convolutional neural network for prediction of remission after stereotactic radiosurgery in patients with acromegaly: a proof‐of‐concept study

放射外科 医学 置信区间 四分位间距 危险系数 队列 内科学 核医学 放射科 放射治疗
作者
Nidan Qiao,Da-min Yu,Guoqing Wu,Qilin Zhang,Boyuan Yao,Min He,Hongying Ye,Zhaoyun Zhang,Yongfei Wang,Hanfeng Wu,Yao Zhao,Jinhua Yu
标识
DOI:10.1002/path.5974
摘要

Artificial intelligence approaches to analyze pathological images (pathomic) for outcome prediction have not been sufficiently considered in the field of pituitary research. A total of 5,504 hematoxylin & eosin-stained pathology image tiles from 58 acromegalic patients with a good or poor outcome were integrated with other clinical and genetic information to train a low-rank fusion convolutional neural network (LFCNN). The model was externally validated in 1,536 patches from an external cohort. The primary outcome was the time to the first endocrine remission after stereotactic radiosurgery (SRS). The median time of initial endocrine remission was 43 months (interquartile range [IQR]: 13-60 months) after SRS, and the 24-month initial cumulative remission rate was 57.9% (IQR: 46.4-72.3%). The patient-wise accuracy of the LFCNN model in predicting the primary outcome was 92.9% in the internal test dataset, and the sensitivity and specificity were 87.5 and 100.0%, respectively. The LFCNN model was a strong predictor of initial cumulative remission in the training cohort (hazard ratio [HR] 9.58, 95% confidence interval [CI] 3.89-23.59; p < 0.001) and was higher than that of established prognostic markers. The predictive value of the LFCNN model was further validated in an external cohort (HR 9.06, 95% CI 1.14-72.25; p = 0.012). In this proof-of-concept study, clinically and genetically useful prognostic markers were integrated with digital images to predict endocrine outcomes after SRS in patients with active acromegaly. The model considerably outperformed established prognostic markers and can potentially be used by clinicians to improve decision-making regarding adjuvant treatment choices. © 2022 The Pathological Society of Great Britain and Ireland.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
温柔的姿完成签到,获得积分10
3秒前
kkkkkkkkkkk完成签到,获得积分10
4秒前
小高的茯苓糕完成签到,获得积分10
5秒前
5秒前
小白完成签到 ,获得积分10
5秒前
Youy完成签到,获得积分10
6秒前
Itsccy完成签到,获得积分10
6秒前
7秒前
7秒前
Ava应助小芦铃采纳,获得10
7秒前
迷你的水绿完成签到,获得积分10
8秒前
8秒前
贵哥发布了新的文献求助10
9秒前
10秒前
小趴菜应助hellohtc采纳,获得10
10秒前
古古怪界丶黑大帅完成签到,获得积分10
11秒前
hang完成签到 ,获得积分10
11秒前
12秒前
科研小白完成签到,获得积分10
13秒前
15秒前
Xiaojie完成签到,获得积分10
15秒前
柒易桉发布了新的文献求助10
16秒前
16秒前
隐形曼青应助Bi8bo采纳,获得10
16秒前
小青椒应助涵泽采纳,获得20
16秒前
moon完成签到 ,获得积分10
17秒前
18秒前
18秒前
腼腆的白开水完成签到 ,获得积分10
19秒前
19秒前
紫熊发布了新的文献求助10
19秒前
Vaibhav完成签到,获得积分10
20秒前
123131发布了新的文献求助10
21秒前
lvlv发布了新的文献求助10
22秒前
善学以致用应助YOBO采纳,获得10
22秒前
飘逸灵煌发布了新的文献求助10
22秒前
22秒前
量子星尘发布了新的文献求助10
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4920603
求助须知:如何正确求助?哪些是违规求助? 4192119
关于积分的说明 13020229
捐赠科研通 3962997
什么是DOI,文献DOI怎么找? 2172359
邀请新用户注册赠送积分活动 1190196
关于科研通互助平台的介绍 1099081