反褶积
标杆管理
水准点(测量)
转录组
计算机科学
计算生物学
管道(软件)
RNA序列
数据挖掘
数据集成
空间分析
生物
算法
基因表达
基因
地图学
数学
遗传学
统计
地理
程序设计语言
营销
业务
作者
Bin Li,Wen Zhang,Chuang Guo,Hao Xu,Longfei Li,Minghao Fang,Yinlei Hu,Xinye Zhang,Xinfeng Yao,Meifang Tang,Ke Liu,Xuetong Zhao,Jun Lin,Linzhao Cheng,Falai Chen,Tian Xue,Kun Qu
出处
期刊:Nature Methods
[Springer Nature]
日期:2022-05-16
卷期号:19 (6): 662-670
被引量:213
标识
DOI:10.1038/s41592-022-01480-9
摘要
Spatial transcriptomics approaches have substantially advanced our capacity to detect the spatial distribution of RNA transcripts in tissues, yet it remains challenging to characterize whole-transcriptome-level data for single cells in space. Addressing this need, researchers have developed integration methods to combine spatial transcriptomic data with single-cell RNA-seq data to predict the spatial distribution of undetected transcripts and/or perform cell type deconvolution of spots in histological sections. However, to date, no independent studies have comparatively analyzed these integration methods to benchmark their performance. Here we present benchmarking of 16 integration methods using 45 paired datasets (comprising both spatial transcriptomics and scRNA-seq data) and 32 simulated datasets. We found that Tangram, gimVI, and SpaGE outperformed other integration methods for predicting the spatial distribution of RNA transcripts, whereas Cell2location, SpatialDWLS, and RCTD are the top-performing methods for the cell type deconvolution of spots. We provide a benchmark pipeline to help researchers select optimal integration methods to process their datasets.
科研通智能强力驱动
Strongly Powered by AbleSci AI