Neuromorphic computing chip with spatiotemporal elasticity for multi-intelligent-tasking robots

计算机科学 神经形态工程学 机器人 分布式计算 上下文切换 强化学习 机器人学 设计空间探索 异步通信 计算机体系结构 人工智能 嵌入式系统 人工神经网络 计算机网络
作者
Songchen Ma,Jing Pei,Weihao Zhang,Guanrui Wang,Dahu Feng,Fangwen Yu,Chenhang Song,Huanyu Qu,Cheng Ma,Mingsheng Lu,Faqiang Liu,Wenhao Zhou,Yujie Wu,Yihan Lin,Hongyi Li,Taoyi Wang,Jiuru Song,Xue Liu,Guoqi Li,Rong Zhao,Luping Shi
出处
期刊:Science robotics [American Association for the Advancement of Science (AAAS)]
卷期号:7 (67) 被引量:33
标识
DOI:10.1126/scirobotics.abk2948
摘要

Recent advances in artificial intelligence have enhanced the abilities of mobile robots in dealing with complex and dynamic scenarios. However, to enable computationally intensive algorithms to be executed locally in multitask robots with low latency and high efficiency, innovations in computing hardware are required. Here, we report TianjicX, a neuromorphic computing hardware that can support true concurrent execution of multiple cross-computing-paradigm neural network (NN) models with various coordination manners for robotics. With spatiotemporal elasticity, TianjicX can support adaptive allocation of computing resources and scheduling of execution time for each task. Key to this approach is a high-level model, “Rivulet,” which bridges the gap between robotic-level requirements and hardware implementations. It abstracts the execution of NN tasks through distribution of static data and streaming of dynamic data to form the basic activity context, adopts time and space slices to achieve elastic resource allocation for each activity, and performs configurable hybrid synchronous-asynchronous grouping. Thereby, Rivulet is capable of supporting independent and interactive execution. Building on Rivulet with hardware design for realizing spatiotemporal elasticity, a 28-nanometer TianjicX neuromorphic chip with event-driven, high parallelism, low latency, and low power was developed. Using a single TianjicX chip and a specially developed compiler stack, we built a multi-intelligent-tasking mobile robot, Tianjicat, to perform a cat-and-mouse game. Multiple tasks, including sound recognition and tracking, object recognition, obstacle avoidance, and decision-making, can be concurrently executed. Compared with NVIDIA Jetson TX2, latency is substantially reduced by 79.09 times, and dynamic power is reduced by 50.66%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
嘉芮完成签到,获得积分10
刚刚
小李发布了新的文献求助10
刚刚
cici0213完成签到 ,获得积分10
刚刚
1秒前
会飞的鱼完成签到,获得积分10
2秒前
freddyyuu完成签到 ,获得积分10
2秒前
岁月间完成签到,获得积分10
2秒前
2秒前
坤坤发布了新的文献求助10
3秒前
兜兜完成签到,获得积分10
3秒前
zyjllz完成签到,获得积分10
3秒前
XZY完成签到 ,获得积分10
4秒前
4秒前
Su发布了新的文献求助10
5秒前
zzzzzz发布了新的文献求助20
5秒前
未改完成签到,获得积分10
6秒前
彭于彦祖应助雨雪霏霏采纳,获得40
6秒前
暖羊羊Y完成签到 ,获得积分10
6秒前
研友_8DoPDZ完成签到,获得积分10
6秒前
77完成签到,获得积分10
7秒前
大模型应助123123采纳,获得30
7秒前
yzyzzyzz51发布了新的文献求助10
7秒前
充电宝应助坤坤采纳,获得10
7秒前
aikeyan完成签到,获得积分20
7秒前
7秒前
HeyHsc完成签到,获得积分10
7秒前
tangying8642完成签到,获得积分10
8秒前
ac发布了新的文献求助10
9秒前
郭123应助CC采纳,获得10
9秒前
9秒前
Akim应助青日采纳,获得10
10秒前
小诗完成签到,获得积分10
10秒前
大模型应助飞云采纳,获得10
11秒前
慕雅青完成签到,获得积分10
11秒前
lijingwen发布了新的文献求助10
11秒前
corey完成签到,获得积分10
12秒前
烂漫的豆芽完成签到,获得积分10
12秒前
王予曦发布了新的文献求助20
12秒前
紧张的滑板完成签到,获得积分10
12秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
the development of the right of privacy in new york 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180194
求助须知:如何正确求助?哪些是违规求助? 2830601
关于积分的说明 7978929
捐赠科研通 2492151
什么是DOI,文献DOI怎么找? 1329250
科研通“疑难数据库(出版商)”最低求助积分说明 635708
版权声明 602954