Neuromorphic computing chip with spatiotemporal elasticity for multi-intelligent-tasking robots

计算机科学 神经形态工程学 机器人 分布式计算 上下文切换 强化学习 机器人学 设计空间探索 异步通信 计算机体系结构 人工智能 嵌入式系统 人工神经网络 计算机网络
作者
Songchen Ma,Jing Pei,Weihao Zhang,Guanrui Wang,Dahu Feng,Fangwen Yu,Chenhang Song,Huanyu Qu,Cheng Ma,Mingsheng Lu,Faqiang Liu,Wenhao Zhou,Yujie Wu,Yihan Lin,Hongyi Li,Taoyi Wang,Jiuru Song,Xue Liu,Guoqi Li,Rong Zhao,Luping Shi
出处
期刊:Science robotics [American Association for the Advancement of Science (AAAS)]
卷期号:7 (67) 被引量:33
标识
DOI:10.1126/scirobotics.abk2948
摘要

Recent advances in artificial intelligence have enhanced the abilities of mobile robots in dealing with complex and dynamic scenarios. However, to enable computationally intensive algorithms to be executed locally in multitask robots with low latency and high efficiency, innovations in computing hardware are required. Here, we report TianjicX, a neuromorphic computing hardware that can support true concurrent execution of multiple cross-computing-paradigm neural network (NN) models with various coordination manners for robotics. With spatiotemporal elasticity, TianjicX can support adaptive allocation of computing resources and scheduling of execution time for each task. Key to this approach is a high-level model, “Rivulet,” which bridges the gap between robotic-level requirements and hardware implementations. It abstracts the execution of NN tasks through distribution of static data and streaming of dynamic data to form the basic activity context, adopts time and space slices to achieve elastic resource allocation for each activity, and performs configurable hybrid synchronous-asynchronous grouping. Thereby, Rivulet is capable of supporting independent and interactive execution. Building on Rivulet with hardware design for realizing spatiotemporal elasticity, a 28-nanometer TianjicX neuromorphic chip with event-driven, high parallelism, low latency, and low power was developed. Using a single TianjicX chip and a specially developed compiler stack, we built a multi-intelligent-tasking mobile robot, Tianjicat, to perform a cat-and-mouse game. Multiple tasks, including sound recognition and tracking, object recognition, obstacle avoidance, and decision-making, can be concurrently executed. Compared with NVIDIA Jetson TX2, latency is substantially reduced by 79.09 times, and dynamic power is reduced by 50.66%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wqwq69完成签到,获得积分10
1秒前
阔达采白完成签到,获得积分10
2秒前
herococa应助菠菜采纳,获得150
2秒前
Aikesi完成签到,获得积分10
2秒前
3秒前
畅快的半仙完成签到,获得积分20
4秒前
Zoey完成签到,获得积分10
4秒前
虞访云完成签到,获得积分10
4秒前
ccc完成签到,获得积分10
4秒前
尼古拉耶维奇完成签到,获得积分10
5秒前
小巴德完成签到,获得积分10
5秒前
Ljr123完成签到,获得积分10
5秒前
Ava应助choys采纳,获得10
6秒前
waynechang完成签到,获得积分10
8秒前
处处铃铛响完成签到,获得积分10
8秒前
凤迎雪飘完成签到,获得积分10
9秒前
陈st发布了新的文献求助10
9秒前
10秒前
啊呜一口甜完成签到,获得积分0
10秒前
10秒前
Gloyxtg发布了新的文献求助10
10秒前
faker完成签到,获得积分10
10秒前
zz应助yannna采纳,获得10
10秒前
春天的粥完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
激动的梦松完成签到,获得积分10
13秒前
大模型应助完美的映秋采纳,获得10
13秒前
WANGs完成签到,获得积分10
13秒前
gaga完成签到,获得积分10
13秒前
13秒前
吴晨曦完成签到,获得积分10
13秒前
义气的衬衫完成签到,获得积分10
13秒前
14秒前
小陈很沉完成签到,获得积分10
14秒前
14秒前
简单向露完成签到,获得积分10
14秒前
zhangxasq完成签到,获得积分10
15秒前
小海绵发布了新的文献求助10
15秒前
liu123456完成签到,获得积分10
15秒前
北落完成签到 ,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651622
求助须知:如何正确求助?哪些是违规求助? 4785400
关于积分的说明 15054736
捐赠科研通 4810228
什么是DOI,文献DOI怎么找? 2573047
邀请新用户注册赠送积分活动 1528941
关于科研通互助平台的介绍 1487934