已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Few-shot classification of façade defects based on extensible classifier and contrastive learning

人工智能 分类器(UML) 计算机科学 机器学习 模式识别(心理学) 深度学习
作者
Zhiyan Cui,Qian Wang,Jingjing Guo,Na Lü
出处
期刊:Automation in Construction [Elsevier]
卷期号:141: 104381-104381 被引量:11
标识
DOI:10.1016/j.autcon.2022.104381
摘要

Façade defect classification based on deep learning has made great progresses in recent years. However, deep learning models commonly need abundant labeled data for training, and it could be impractical and expensive to collect sufficient labeled samples for all classes of defects. Sometimes, there are only a few samples in rare classes, which are not able to support the training process. In addition, common classifiers based on deep learning cannot easily extend their recognition classes and thus cannot classify unseen classes with only a few samples. Therefore, to overcome the problem of insufficient data and the extension constraint of the classifier, a few-shot classification method based on an extensible classifier and contrastive learning is proposed to recognize unseen classes with limited (1, 2 or 5) samples. The extensible classifier implemented by imprinting weights can easily extend the model to classify unseen classes with a few samples. Meanwhile, contrastive learning, which is a complementary task in training, is used to enrich the model’s generalization and representation on unseen classes. Besides, a hard negative mining (HNM) method is introduced to address the imbalanced data in contrastive learning and further improve accuracies. Experimental results demonstrate that the proposed method improves the few-shot classification accuracy with only 1 sample from 35.8% to 63.5% on novel and unseen classes, and from 73.1% to 82.1% on all classes, while maintaining a high and comparable accuracy (89.6%) on base classes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
花朝初三完成签到,获得积分10
1秒前
火火发布了新的文献求助10
2秒前
夏凛完成签到 ,获得积分10
2秒前
Dr_Stars完成签到,获得积分10
3秒前
香蕉觅云应助花朝初三采纳,获得10
4秒前
爆米花应助原本山川采纳,获得10
7秒前
隐形曼青应助Ain采纳,获得10
8秒前
马上毕业完成签到 ,获得积分20
9秒前
9秒前
四号玩家发布了新的文献求助10
10秒前
乐乐应助matteo采纳,获得10
13秒前
15秒前
带头大哥应助cdu采纳,获得200
15秒前
桐桐应助火焰向上采纳,获得10
18秒前
20秒前
20秒前
Ashley完成签到,获得积分10
21秒前
starry完成签到 ,获得积分10
23秒前
LONG完成签到 ,获得积分10
24秒前
Docyongsun完成签到,获得积分10
25秒前
Ain发布了新的文献求助10
25秒前
25秒前
26秒前
26秒前
27秒前
哈哈哈完成签到,获得积分20
27秒前
meinv666发布了新的文献求助10
28秒前
LJ徽完成签到 ,获得积分10
29秒前
哈哈哈发布了新的文献求助10
31秒前
原本山川发布了新的文献求助10
32秒前
33秒前
zzzz完成签到,获得积分10
33秒前
33秒前
33秒前
打打应助杨永磊采纳,获得30
33秒前
Hello应助Ain采纳,获得10
33秒前
火焰向上发布了新的文献求助10
34秒前
meinv666完成签到,获得积分10
35秒前
竹焚完成签到 ,获得积分10
36秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125773
求助须知:如何正确求助?哪些是违规求助? 2776098
关于积分的说明 7729147
捐赠科研通 2431519
什么是DOI,文献DOI怎么找? 1292132
科研通“疑难数据库(出版商)”最低求助积分说明 622387
版权声明 600380