Few-shot classification of façade defects based on extensible classifier and contrastive learning

人工智能 分类器(UML) 计算机科学 机器学习 模式识别(心理学) 深度学习
作者
Zhiyan Cui,Qian Wang,Jingjing Guo,Na Lü
出处
期刊:Automation in Construction [Elsevier]
卷期号:141: 104381-104381 被引量:11
标识
DOI:10.1016/j.autcon.2022.104381
摘要

Façade defect classification based on deep learning has made great progresses in recent years. However, deep learning models commonly need abundant labeled data for training, and it could be impractical and expensive to collect sufficient labeled samples for all classes of defects. Sometimes, there are only a few samples in rare classes, which are not able to support the training process. In addition, common classifiers based on deep learning cannot easily extend their recognition classes and thus cannot classify unseen classes with only a few samples. Therefore, to overcome the problem of insufficient data and the extension constraint of the classifier, a few-shot classification method based on an extensible classifier and contrastive learning is proposed to recognize unseen classes with limited (1, 2 or 5) samples. The extensible classifier implemented by imprinting weights can easily extend the model to classify unseen classes with a few samples. Meanwhile, contrastive learning, which is a complementary task in training, is used to enrich the model’s generalization and representation on unseen classes. Besides, a hard negative mining (HNM) method is introduced to address the imbalanced data in contrastive learning and further improve accuracies. Experimental results demonstrate that the proposed method improves the few-shot classification accuracy with only 1 sample from 35.8% to 63.5% on novel and unseen classes, and from 73.1% to 82.1% on all classes, while maintaining a high and comparable accuracy (89.6%) on base classes.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一科研土豆完成签到,获得积分10
1秒前
6秒前
拾捌发布了新的文献求助10
7秒前
嘻嘻发布了新的文献求助10
11秒前
科研通AI6.2应助嘻嘻采纳,获得10
15秒前
19秒前
21秒前
汉堡包应助拾捌采纳,获得10
22秒前
雨辰完成签到 ,获得积分10
23秒前
BoBo完成签到 ,获得积分10
24秒前
雨打春柳完成签到 ,获得积分10
24秒前
vans如意完成签到 ,获得积分10
25秒前
Patronus发布了新的文献求助10
26秒前
ll发布了新的文献求助10
26秒前
郭优优完成签到 ,获得积分10
26秒前
可了不得完成签到 ,获得积分10
27秒前
Ryan发布了新的文献求助10
28秒前
Evander完成签到,获得积分10
28秒前
Evander发布了新的文献求助10
31秒前
33秒前
淡淡的山芙完成签到 ,获得积分10
33秒前
33秒前
fengzi151发布了新的文献求助10
38秒前
槑槑完成签到 ,获得积分10
39秒前
顾矜应助Ryan采纳,获得10
40秒前
科研通AI6.1应助HJJHJH采纳,获得10
41秒前
42秒前
42秒前
42秒前
42秒前
42秒前
43秒前
43秒前
43秒前
jueding应助科研通管家采纳,获得10
43秒前
科研通AI2S应助科研通管家采纳,获得10
43秒前
芳华如梦完成签到 ,获得积分10
45秒前
搜集达人应助袁梦采纳,获得10
47秒前
48秒前
卷发麦麦发布了新的文献求助10
54秒前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
The Linearization Handbook for MILP Optimization: Modeling Tricks and Patterns for Practitioners (MILP Optimization Handbooks) 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5852126
求助须知:如何正确求助?哪些是违规求助? 6276113
关于积分的说明 15627658
捐赠科研通 4968034
什么是DOI,文献DOI怎么找? 2678871
邀请新用户注册赠送积分活动 1623127
关于科研通互助平台的介绍 1579506