已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep-learning-based 3D super-resolution MRI radiomics model: superior predictive performance in preoperative T-staging of rectal cancer

医学 无线电技术 神经组阅片室 接收机工作特性 放射科 置信区间 结直肠癌 磁共振成像 核医学 金标准(测试) 人工智能 癌症 内科学 神经学 计算机科学 精神科
作者
Min Hou,Long Zhou,Jihong Sun
出处
期刊:European Radiology [Springer Nature]
卷期号:33 (1): 1-10 被引量:31
标识
DOI:10.1007/s00330-022-08952-8
摘要

To investigate the feasibility and efficacy of a deep-learning (DL)-based three-dimensional (3D) super-resolution (SR) MRI radiomics model for preoperative T-staging prediction in rectal cancer (RC).Seven hundred six eligible RC patients (T1/2 = 287, T3/4 = 419) were retrospectively enrolled in this study and chronologically allocated into a training cohort (n = 565) and a validation cohort (n = 141). We conducted a deep-transfer-learning network on high-resolution (HR) T2-weighted imaging (T2WI) to enhance the z-resolution of the images and acquired the preoperative SRT2WI. The radiomics models named modelHRT2 and modelSRT2 were respectively constructed with high-dimensional quantitative features extracted from manually segmented volume of interests of HRT2WI and SRT2WI through the Least Absolute Shrinkage and Selection Operator method. The performances of the models were evaluated by ROC, calibration, and decision curves.ModelSRT2 outperformed modelHRT2 (AUC 0.869, sensitivity 71.1%, specificity 93.1%, and accuracy 83.3% vs. AUC 0.810, sensitivity 89.5%, specificity 70.1%, and accuracy 77.3%) in distinguishing T1/2 and T3/4 RC with significant difference (p < 0.05). Both radiomics models achieved higher AUCs than the expert radiologists (0.685, 95% confidence interval 0.595-0.775, p < 0.05). The calibration curves confirmed high goodness of fit, and the decision curve analysis revealed the clinical value.ModelSRT2 yielded superior predictive performance in preoperative RC T-staging by comparison with modelHRT2 and expert radiologists' visual assessments.• For the first time, DL-based 3D SR images were applied in radiomics analysis for clinical utility. • Compared with the visual assessment of expert radiologists and the conventional radiomics model based on HRT2WI, the SR radiomics model showed a more favorable capability in helping clinicians assess the invasion depth of RC preoperatively. • This is the largest radiomics study for T-staging prediction in RC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
justin发布了新的文献求助10
2秒前
幽默果汁完成签到 ,获得积分10
2秒前
nav发布了新的文献求助10
4秒前
安徒完成签到,获得积分10
4秒前
支问凝完成签到,获得积分10
4秒前
5秒前
我要发sci完成签到,获得积分20
5秒前
善学以致用应助Aria_chao采纳,获得10
8秒前
9秒前
迷途发布了新的文献求助10
10秒前
彭于晏应助Yolen LI采纳,获得10
12秒前
火火火发布了新的文献求助10
14秒前
碧蓝丹烟完成签到 ,获得积分10
15秒前
彭于晏应助迷途采纳,获得10
17秒前
21秒前
pipipiya完成签到 ,获得积分10
22秒前
Yolen LI发布了新的文献求助10
25秒前
27秒前
28秒前
Tigher完成签到,获得积分10
30秒前
谢峥嵘完成签到 ,获得积分10
31秒前
31秒前
32秒前
34秒前
未来可期发布了新的文献求助30
35秒前
Faust完成签到,获得积分10
35秒前
一二三亖完成签到,获得积分10
35秒前
乐乐应助阿饼采纳,获得30
35秒前
jcd发布了新的文献求助10
37秒前
敏感以旋完成签到 ,获得积分10
38秒前
38秒前
Doraemon完成签到 ,获得积分10
39秒前
momo发布了新的文献求助10
41秒前
李爱国应助小晨要发papper采纳,获得10
43秒前
Ternura发布了新的文献求助10
43秒前
迷途发布了新的文献求助10
44秒前
enli完成签到,获得积分10
47秒前
小马甲应助迷途采纳,获得10
48秒前
bkagyin应助Liao采纳,获得10
50秒前
52秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146415
求助须知:如何正确求助?哪些是违规求助? 2797811
关于积分的说明 7825766
捐赠科研通 2454165
什么是DOI,文献DOI怎么找? 1306196
科研通“疑难数据库(出版商)”最低求助积分说明 627666
版权声明 601503