Deep-learning-based 3D super-resolution MRI radiomics model: superior predictive performance in preoperative T-staging of rectal cancer

医学 无线电技术 神经组阅片室 接收机工作特性 放射科 置信区间 结直肠癌 磁共振成像 核医学 金标准(测试) 人工智能 癌症 内科学 神经学 计算机科学 精神科
作者
Min Hou,Long Zhou,Jihong Sun
出处
期刊:European Radiology [Springer Nature]
卷期号:33 (1): 1-10 被引量:31
标识
DOI:10.1007/s00330-022-08952-8
摘要

To investigate the feasibility and efficacy of a deep-learning (DL)-based three-dimensional (3D) super-resolution (SR) MRI radiomics model for preoperative T-staging prediction in rectal cancer (RC).Seven hundred six eligible RC patients (T1/2 = 287, T3/4 = 419) were retrospectively enrolled in this study and chronologically allocated into a training cohort (n = 565) and a validation cohort (n = 141). We conducted a deep-transfer-learning network on high-resolution (HR) T2-weighted imaging (T2WI) to enhance the z-resolution of the images and acquired the preoperative SRT2WI. The radiomics models named modelHRT2 and modelSRT2 were respectively constructed with high-dimensional quantitative features extracted from manually segmented volume of interests of HRT2WI and SRT2WI through the Least Absolute Shrinkage and Selection Operator method. The performances of the models were evaluated by ROC, calibration, and decision curves.ModelSRT2 outperformed modelHRT2 (AUC 0.869, sensitivity 71.1%, specificity 93.1%, and accuracy 83.3% vs. AUC 0.810, sensitivity 89.5%, specificity 70.1%, and accuracy 77.3%) in distinguishing T1/2 and T3/4 RC with significant difference (p < 0.05). Both radiomics models achieved higher AUCs than the expert radiologists (0.685, 95% confidence interval 0.595-0.775, p < 0.05). The calibration curves confirmed high goodness of fit, and the decision curve analysis revealed the clinical value.ModelSRT2 yielded superior predictive performance in preoperative RC T-staging by comparison with modelHRT2 and expert radiologists' visual assessments.• For the first time, DL-based 3D SR images were applied in radiomics analysis for clinical utility. • Compared with the visual assessment of expert radiologists and the conventional radiomics model based on HRT2WI, the SR radiomics model showed a more favorable capability in helping clinicians assess the invasion depth of RC preoperatively. • This is the largest radiomics study for T-staging prediction in RC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助金色年华采纳,获得10
1秒前
充电宝应助kh453采纳,获得10
1秒前
正经俠发布了新的文献求助10
1秒前
一衣发布了新的文献求助20
2秒前
可爱的函函应助药学牛马采纳,获得10
2秒前
XM发布了新的文献求助10
2秒前
专注之双完成签到,获得积分10
3秒前
SciGPT应助十一采纳,获得10
3秒前
3秒前
A1234完成签到,获得积分10
4秒前
刘铭晨发布了新的文献求助10
5秒前
孙冉冉完成签到 ,获得积分10
8秒前
8秒前
9秒前
9秒前
大模型应助hhzz采纳,获得10
10秒前
一只智慧喵完成签到,获得积分10
10秒前
科目三应助Fundamental采纳,获得10
11秒前
11秒前
miumiuka发布了新的文献求助10
12秒前
greenPASS666发布了新的文献求助10
13秒前
xuanxuan发布了新的文献求助10
13秒前
zfy发布了新的文献求助10
15秒前
15秒前
15秒前
Maor完成签到,获得积分10
15秒前
白菜发布了新的文献求助10
16秒前
16秒前
17秒前
妮妮完成签到 ,获得积分10
19秒前
19秒前
傲娇的凡旋应助spurs17采纳,获得10
19秒前
长情若魔完成签到,获得积分10
21秒前
XM完成签到,获得积分10
21秒前
21秒前
LQW发布了新的文献求助30
21秒前
大个应助Rrr采纳,获得10
21秒前
22秒前
23秒前
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808