医学
无线电技术
神经组阅片室
接收机工作特性
放射科
置信区间
结直肠癌
磁共振成像
核医学
金标准(测试)
人工智能
癌症
内科学
神经学
计算机科学
精神科
作者
Min Hou,Long Zhou,Jihong Sun
标识
DOI:10.1007/s00330-022-08952-8
摘要
To investigate the feasibility and efficacy of a deep-learning (DL)-based three-dimensional (3D) super-resolution (SR) MRI radiomics model for preoperative T-staging prediction in rectal cancer (RC).Seven hundred six eligible RC patients (T1/2 = 287, T3/4 = 419) were retrospectively enrolled in this study and chronologically allocated into a training cohort (n = 565) and a validation cohort (n = 141). We conducted a deep-transfer-learning network on high-resolution (HR) T2-weighted imaging (T2WI) to enhance the z-resolution of the images and acquired the preoperative SRT2WI. The radiomics models named modelHRT2 and modelSRT2 were respectively constructed with high-dimensional quantitative features extracted from manually segmented volume of interests of HRT2WI and SRT2WI through the Least Absolute Shrinkage and Selection Operator method. The performances of the models were evaluated by ROC, calibration, and decision curves.ModelSRT2 outperformed modelHRT2 (AUC 0.869, sensitivity 71.1%, specificity 93.1%, and accuracy 83.3% vs. AUC 0.810, sensitivity 89.5%, specificity 70.1%, and accuracy 77.3%) in distinguishing T1/2 and T3/4 RC with significant difference (p < 0.05). Both radiomics models achieved higher AUCs than the expert radiologists (0.685, 95% confidence interval 0.595-0.775, p < 0.05). The calibration curves confirmed high goodness of fit, and the decision curve analysis revealed the clinical value.ModelSRT2 yielded superior predictive performance in preoperative RC T-staging by comparison with modelHRT2 and expert radiologists' visual assessments.• For the first time, DL-based 3D SR images were applied in radiomics analysis for clinical utility. • Compared with the visual assessment of expert radiologists and the conventional radiomics model based on HRT2WI, the SR radiomics model showed a more favorable capability in helping clinicians assess the invasion depth of RC preoperatively. • This is the largest radiomics study for T-staging prediction in RC.
科研通智能强力驱动
Strongly Powered by AbleSci AI