Acritarch公司
生物地层学
古生物学
分类单元
生物
分类学(生物学)
浮游植物
门
进化生物学
生态学
营养物
细菌
作者
Elise Wallet,Sebastian Willman,Ben J. Slater
出处
期刊:Paleobiology
[Cambridge University Press]
日期:2022-05-19
卷期号:48 (4): 576-600
被引量:2
摘要
Abstract The Cambrian evolutionary radiations are marked by spectacular biotic turnovers and the establishment of increasingly tiered food chains. At the base of these food chains are primary producers, which in the Cambrian fossil record are chiefly represented among organic-walled microfossils. The majority of these microfossil remains have traditionally been attributed to an informal category of incertae sedis called “acritarchs,” based entirely on form taxonomy. Acritarch form taxa have been intensely used for biostratigraphy and in large-scale studies of phytoplankton diversity. However, both prospects have been challenged by cases of taxonomic inconsistencies and oversplitting arising from the large phenotypic plasticity seen among these microfossils. The acritarch form genus Skiagia stands as an ideal case study to explore these taxonomic challenges, because it encompasses a number of form species widely used in lower Cambrian biostratigraphy. Moreover, subtle morphological differences among Skiagia species were suggested to underlie key evolutionary innovations toward complex reproductive strategies. Here we apply a multivariate morphometric approach to investigate the morphological variation of Skiagia -plexus acritarchs using an assemblage sourced from the Buen Formation (Cambrian Series 2, Stages 3–4) of North Greenland. Our analysis showed that the species-level classification of Skiagia discretizes a continuous spectrum of morphologies. While these findings bring important taxonomic and biostratigraphic hurdles to light, the unequal frequency distribution of life cycle stages among Skiagia species suggests that certain elements of phytoplankton paleobiology are nonetheless captured by Skiagia form taxonomy. These results demonstrate the value of using morphometric tools to explore acritarch phenotypic plasticity and its potential ontogenetic and paleoecological drivers in Cambrian ecosystems.
科研通智能强力驱动
Strongly Powered by AbleSci AI