作者
Baixi Zhang,Lijuan Ni,Xiaoshu Tang,Xuemei Chen,Bo Hu
摘要
trans-10, cis-12-Conjugated linoleic acid (t10, c12-CLA) is an octadecadienoic acid with various biological benefits. Previously, linoleic acid isomerase from Propionibacterium acnes (PAI) was overexpressed in Yarrowia lipolytica (Y. lipolytica) to produce t10, c12-CLA. However, the t10, c12-CLA yield was restricted by the peroxisomal β-oxidation pathway. In this study, to minimize the degradation of t10, c12-CLA, four genetically modified strains of Y. lipolytica (Δpox2-oPAI, Δpox3-oPAI, Δpox2Δpox3-oPAI, and Δpex10-oPAI) were constructed and compared in terms of production stability and yield of t10, c12-CLA using safflower seed oil as substrates. The Δpex10-oPAI strain exhibited the best results, as revealed by the reduction of the t10, c12-CLA degradation rate from 58.5 to 18.6 mg/L/h. Additionally, the YLUpex10mP recombinant strain bearing six copies of oPAI combined with PEX10 deletion enhanced t10, c12-CLA production to 7.4 g/L and exhibited a CLA degradation rate of 19.7 mg/L/h, a 78% decrease from that of the control strain. Finally, in a bioreactor containing low-cost volatile fatty acids as partial carbon sources, the t10, c12-CLA content in the YLUpex10mP strain increased to 9.7 g/L, 1.3 times higher than in flasks. To our knowledge, this is the highest t10, c12-CLA yield through microbial synthesis reported to date.