Autophagy and pluripotency: self-eating your way to eternal youth

自噬 生物 诱导多能干细胞 胚胎干细胞 细胞生物学 粒体自噬 表观遗传学 重编程 干细胞 细胞分化 细胞 遗传学 细胞凋亡 基因
作者
Yi Xu,Xiaolu Yang
出处
期刊:Trends in Cell Biology [Elsevier BV]
卷期号:32 (10): 868-882 被引量:8
标识
DOI:10.1016/j.tcb.2022.04.001
摘要

Macroautophagic flux is accentuated during early embryonic development and in embryonic stem cells (ESCs), and upregulation of macroautophagy facilitates reprogramming of somatic cells to iPSCs. Macroautophagy sustains quality and homeostasis of proteins and organelles in stem cells. It also remodels proteome, metabolome, and epigenome to facilitate the acquisition and maintenance of the pluripotent state. Mitophagy regulates mitochondrial integrity, dynamics, and function in stem cells. Mitophagy also reduces the number of mitochondria to enable glycolytic metabolism and minimize redox stress. Chaperone-mediated autophagy (CMA) is maintained at low levels in ESCs and is markedly increased upon differentiation. CMA modulates intracellular levels of an obligatory cofactor for DNA and histone demethylases, thereby regulating epigenetic landscape and fate decisions of ESCs. Pluripotent stem cells (PSCs) can self-renew indefinitely in culture while retaining the potential to differentiate into virtually all normal cell types in the adult animal. Due to these remarkable properties, PSCs not only provide a superb system to investigate mammalian development and model diseases, but also hold promise for regenerative therapies. Autophagy is a self-digestive process that targets proteins, organelles, and other cellular contents for lysosomal degradation. Here, we review recent literature on the mechanistic role of different types of autophagy in embryonic development, embryonic stem cells (ESCs), and induced PSCs (iPSCs), focusing on their remodeling functions on protein, metabolism, and epigenetics. We present a perspective on unsolved issues and propose that autophagy is a promising target to modulate acquisition, maintenance, and directed differentiation of PSCs. Pluripotent stem cells (PSCs) can self-renew indefinitely in culture while retaining the potential to differentiate into virtually all normal cell types in the adult animal. Due to these remarkable properties, PSCs not only provide a superb system to investigate mammalian development and model diseases, but also hold promise for regenerative therapies. Autophagy is a self-digestive process that targets proteins, organelles, and other cellular contents for lysosomal degradation. Here, we review recent literature on the mechanistic role of different types of autophagy in embryonic development, embryonic stem cells (ESCs), and induced PSCs (iPSCs), focusing on their remodeling functions on protein, metabolism, and epigenetics. We present a perspective on unsolved issues and propose that autophagy is a promising target to modulate acquisition, maintenance, and directed differentiation of PSCs. also known as tissue stem cells or somatic stem cells, are rare undifferentiated populations of cells that exist in a tissue or organ. Adult stem cells can give rise to a limited number of mature cell types that build the tissue where they reside. the process during which cells acquire specific identity, which can be affected by both extrinsic and intrinsic signals. PSCs derived from the inner cell mass of mouse or human preimplantation blastocysts and that possess the ability to self-renew and differentiate into the three primary germ layers. PSCs isolated from postimplantation epiblasts. EpiSCs were isolated from mouse embryos but not human embryos due to ethical considerations. PSCs generated directly from somatic cells by reprogramming. These cells have the capacity to self-renew and differentiate into all cell types except for cells of extraembryonic tissues. cells that can develop into the three primary germ layers of the early embryo as well as extraembryonic tissues such as the placenta.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
slz发布了新的文献求助10
1秒前
1秒前
少管我发布了新的文献求助10
1秒前
小透明发布了新的文献求助10
1秒前
2秒前
3秒前
moji完成签到 ,获得积分10
3秒前
香蕉觅云应助淡定的惜采纳,获得10
4秒前
6秒前
微笑芷蕾发布了新的文献求助30
6秒前
6秒前
Shrine发布了新的文献求助10
6秒前
cxy完成签到,获得积分10
7秒前
8秒前
8秒前
田様应助旧梦采纳,获得10
9秒前
mx发布了新的文献求助10
10秒前
寒天抒完成签到 ,获得积分10
11秒前
11秒前
QQ发布了新的文献求助10
12秒前
无情心情完成签到,获得积分10
13秒前
无情心情发布了新的文献求助10
15秒前
老大蒂亚戈应助潇湘雪月采纳,获得10
16秒前
打我呀发布了新的文献求助30
16秒前
17秒前
所所应助科研通管家采纳,获得10
17秒前
汉堡包应助科研通管家采纳,获得10
18秒前
MchemG应助科研通管家采纳,获得10
18秒前
YamDaamCaa应助科研通管家采纳,获得30
18秒前
852应助科研通管家采纳,获得10
18秒前
大模型应助科研通管家采纳,获得30
18秒前
MchemG应助科研通管家采纳,获得10
18秒前
完美世界应助科研通管家采纳,获得30
18秒前
情怀应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
隐形曼青应助科研通管家采纳,获得10
18秒前
MchemG应助科研通管家采纳,获得10
18秒前
18秒前
李爱国应助深情的雁露采纳,获得10
18秒前
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989406
求助须知:如何正确求助?哪些是违规求助? 3531522
关于积分的说明 11254187
捐赠科研通 3270174
什么是DOI,文献DOI怎么找? 1804901
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809174