Transformer-based map-matching model with limited labeled data using transfer-learning approach

地图匹配 计算机科学 变压器 人工智能 匹配(统计) 基本事实 学习迁移 原始数据 数据挖掘 模式识别(心理学) 数学 全球定位系统 工程类 电信 统计 电气工程 电压 程序设计语言
作者
Zhixiong Jin,Jiwon Kim,Hwasoo Yeo,Seongjin Choi
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier BV]
卷期号:140: 103668-103668 被引量:28
标识
DOI:10.1016/j.trc.2022.103668
摘要

In many spatial trajectory-based applications, it is necessary to map raw trajectory data points onto road networks in digital maps, which is commonly referred to as a map-matching process. While most previous map-matching methods have focused on using rule-based algorithms to deal with the map-matching problems, in this paper, we consider the map-matching task from the data-driven perspective, proposing a deep learning-based map-matching model. We build a Transformer-based map-matching model with a transfer learning approach. We generate trajectory data to pre-train the Transformer model and then fine-tune the model with a limited number of labeled data to minimize the model development cost and reduce the real-to-virtual gaps. Three metrics (Average Hamming Distance, F-score, and BLEU) at two levels (point and segment level) are used to evaluate the model performance. The model is tested with real-world datasets, and the results show that the proposed map-matching model outperforms other existing map-matching models. We also analyze the matching mechanisms of the Transformer in the map-matching process, which helps to interpret the input data’s internal correlation and the external relation between input data and matching results. In addition, the proposed model shows the possibility of using generated trajectories to solve the map-matching problems in the limited labeled data environment. • Design a transfer learning approach to solve labeled data sparsity problems. • Develop a Transformer-based map-matching model with high performance. • Evaluate the model performance using three metrics at two levels. • Analyze the results to improve the model’s explainability and interpretability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐观小之应助满满采纳,获得10
刚刚
刚刚
科特柯本发布了新的文献求助10
1秒前
1秒前
2秒前
自然的夜安完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助30
2秒前
3秒前
顺利道消完成签到,获得积分10
3秒前
霍师傅发布了新的文献求助10
3秒前
紫心发布了新的文献求助10
3秒前
3秒前
4秒前
宁方芳完成签到,获得积分20
6秒前
zzzyk发布了新的文献求助10
6秒前
emptyyy完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
宁方芳发布了新的文献求助30
9秒前
CC发布了新的文献求助10
10秒前
seine完成签到 ,获得积分10
10秒前
科目三应助花开富贵采纳,获得10
10秒前
Dunley发布了新的文献求助10
11秒前
jiahuo1完成签到,获得积分10
11秒前
天天快乐应助sun采纳,获得10
11秒前
zzzyk完成签到,获得积分10
11秒前
13秒前
你的风筝应助不准吃烤肉采纳,获得20
13秒前
李健应助复杂焦采纳,获得10
15秒前
15秒前
16秒前
16秒前
16秒前
睡睡发布了新的文献求助10
18秒前
酒酒完成签到 ,获得积分10
18秒前
Christine应助诚心的大碗采纳,获得10
19秒前
ekswai发布了新的文献求助10
20秒前
Dr_Zhang发布了新的文献求助10
20秒前
鳗鱼友灵发布了新的文献求助10
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956458
求助须知:如何正确求助?哪些是违规求助? 3502587
关于积分的说明 11108917
捐赠科研通 3233359
什么是DOI,文献DOI怎么找? 1787265
邀请新用户注册赠送积分活动 870585
科研通“疑难数据库(出版商)”最低求助积分说明 802122