Transformer-based map-matching model with limited labeled data using transfer-learning approach

地图匹配 计算机科学 变压器 人工智能 匹配(统计) 基本事实 学习迁移 原始数据 数据挖掘 模式识别(心理学) 数学 全球定位系统 工程类 电信 统计 电气工程 电压 程序设计语言
作者
Zhixiong Jin,Jiwon Kim,Hwasoo Yeo,Seongjin Choi
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:140: 103668-103668 被引量:26
标识
DOI:10.1016/j.trc.2022.103668
摘要

In many spatial trajectory-based applications, it is necessary to map raw trajectory data points onto road networks in digital maps, which is commonly referred to as a map-matching process. While most previous map-matching methods have focused on using rule-based algorithms to deal with the map-matching problems, in this paper, we consider the map-matching task from the data-driven perspective, proposing a deep learning-based map-matching model. We build a Transformer-based map-matching model with a transfer learning approach. We generate trajectory data to pre-train the Transformer model and then fine-tune the model with a limited number of labeled data to minimize the model development cost and reduce the real-to-virtual gaps. Three metrics (Average Hamming Distance, F-score, and BLEU) at two levels (point and segment level) are used to evaluate the model performance. The model is tested with real-world datasets, and the results show that the proposed map-matching model outperforms other existing map-matching models. We also analyze the matching mechanisms of the Transformer in the map-matching process, which helps to interpret the input data’s internal correlation and the external relation between input data and matching results. In addition, the proposed model shows the possibility of using generated trajectories to solve the map-matching problems in the limited labeled data environment. • Design a transfer learning approach to solve labeled data sparsity problems. • Develop a Transformer-based map-matching model with high performance. • Evaluate the model performance using three metrics at two levels. • Analyze the results to improve the model’s explainability and interpretability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wxp_bioinfo完成签到,获得积分10
刚刚
刚刚
桐桐应助wangg采纳,获得10
刚刚
Jun完成签到,获得积分10
1秒前
芝士的酒发布了新的文献求助50
1秒前
2秒前
赘婿应助复杂的问玉采纳,获得30
2秒前
3秒前
3秒前
4秒前
端庄白开水完成签到,获得积分10
4秒前
吕春雨发布了新的文献求助10
4秒前
大个应助wxp_bioinfo采纳,获得10
5秒前
yqq完成签到 ,获得积分10
5秒前
6秒前
7秒前
芝士发布了新的文献求助10
7秒前
橘子发布了新的文献求助10
8秒前
8秒前
8秒前
晨曦发布了新的文献求助10
9秒前
9秒前
kobiy完成签到 ,获得积分10
9秒前
wu完成签到 ,获得积分10
10秒前
蛋泥完成签到,获得积分10
10秒前
顾矜应助mingjie采纳,获得10
11秒前
zhaowenxian发布了新的文献求助10
11秒前
勤劳傲晴发布了新的文献求助10
12秒前
12秒前
橘子完成签到,获得积分10
14秒前
可耐的从安完成签到 ,获得积分10
15秒前
zho应助背后的诺言采纳,获得10
15秒前
粥粥完成签到,获得积分10
15秒前
16秒前
打打应助陈杰采纳,获得10
17秒前
充电宝应助柔弱凡松采纳,获得10
18秒前
Jasmine发布了新的文献求助10
19秒前
20秒前
20秒前
大气的秋完成签到,获得积分10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794