卡恩-希利尔德方程
趋同(经济学)
数学
无穷
应用数学
空格(标点符号)
时空
状态空间
数学分析
类型(生物学)
偏微分方程
计算机科学
物理
经济
地质学
量子力学
经济增长
操作系统
古生物学
统计
作者
Matthieu Brachet,Philippe Parnaudeau,Morgan Pierre
出处
期刊:Discrete and Continuous Dynamical Systems - Series S
[American Institute of Mathematical Sciences]
日期:2022-01-01
卷期号:15 (8): 1987-1987
被引量:1
标识
DOI:10.3934/dcdss.2022110
摘要
<p style='text-indent:20px;'>We review space and time discretizations of the Cahn-Hilliard equation which are energy stable. In many cases, we prove that a solution converges to a steady state as time goes to infinity. The proof is based on Lyapunov theory and on a Lojasiewicz type inequality. In a few cases, the convergence result is only partial and this raises some interesting questions. Numerical simulations in two and three space dimensions illustrate the theoretical results. Several perspectives are discussed.</p>
科研通智能强力驱动
Strongly Powered by AbleSci AI