MRI Radiogenomics of Pediatric Medulloblastoma: A Multicenter Study

医学 放射基因组学 髓母细胞瘤 曼惠特尼U检验 分类器(UML) 接收机工作特性 人工智能 二元分类 机器学习 肿瘤科 内科学 病理 放射科 无线电技术 计算机科学 支持向量机
作者
Michael Zhang,Samuel W Wong,Jason N. Wright,Matthias Wagner,Sebastian Toescu,Michelle Han,Lydia Tam,Quan Zhou,Saman Ahmadian,Katie Shpanskaya,Seth Lummus,Hollie Lai,Azam Eghbal,Alireza Radmanesh,Jordan Nemelka,Stephen C. Harward,Michael Malinzak,Suzanne Laughlin,Sébastien Perreault,Kristina R M Braun,Robert M. Lober,Yoon Jae Cho,Birgit Ertl‐Wagner,Chang Yueh Ho,Kshitij Mankad,Hannes Vogel,Samuel Cheshier,Thomas S. Jacques,Kristian Aquilina,Paul G. Fisher,Michael D. Taylor,Tina Young Poussaint,Nicholas A. Vitanza,Gerald A. Grant,Stefan M. Pfister,Eric M. Thompson,Alok Jaju,Vijay Ramaswamy,Kristen W. Yeom
出处
期刊:Radiology [Radiological Society of North America]
卷期号:304 (2): 406-416 被引量:40
标识
DOI:10.1148/radiol.212137
摘要

Background Radiogenomics of pediatric medulloblastoma (MB) offers an opportunity for MB risk stratification, which may aid therapeutic decision making, family counseling, and selection of patient groups suitable for targeted genetic analysis. Purpose To develop machine learning strategies that identify the four clinically significant MB molecular subgroups. Materials and Methods In this retrospective study, consecutive pediatric patients with newly diagnosed MB at MRI at 12 international pediatric sites between July 1997 and May 2020 were identified. There were 1800 features extracted from T2- and contrast-enhanced T1-weighted preoperative MRI scans. A two-stage sequential classifier was designed—one that first identifies non-wingless (WNT) and non–sonic hedgehog (SHH) MB and then differentiates therapeutically relevant WNT from SHH. Further, a classifier that distinguishes high-risk group 3 from group 4 MB was developed. An independent, binary subgroup analysis was conducted to uncover radiomics features unique to infantile versus childhood SHH subgroups. The best-performing models from six candidate classifiers were selected, and performance was measured on holdout test sets. CIs were obtained by bootstrapping the test sets for 2000 random samples. Model accuracy score was compared with the no-information rate using the Wald test. Results The study cohort comprised 263 patients (mean age ± SD at diagnosis, 87 months ± 60; 166 boys). A two-stage classifier outperformed a single-stage multiclass classifier. The combined, sequential classifier achieved a microaveraged F1 score of 88% and a binary F1 score of 95% specifically for WNT. A group 3 versus group 4 classifier achieved an area under the receiver operating characteristic curve of 98%. Of the Image Biomarker Standardization Initiative features, texture and first-order intensity features were most contributory across the molecular subgroups. Conclusion An MRI-based machine learning decision path allowed identification of the four clinically relevant molecular pediatric medulloblastoma subgroups. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Chaudhary and Bapuraj in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助小黑驴采纳,获得10
刚刚
暴躁的依波完成签到,获得积分10
刚刚
李伟完成签到 ,获得积分10
1秒前
bkagyin应助Royal耗子采纳,获得10
1秒前
英俊的铭应助小橘采纳,获得10
2秒前
2秒前
韩瑞发布了新的文献求助10
3秒前
fuwen完成签到,获得积分10
3秒前
4秒前
左氧氟沙星完成签到,获得积分20
4秒前
青奴发布了新的文献求助10
4秒前
123发布了新的文献求助10
4秒前
4秒前
5秒前
别说话发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
爱笑热狗发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
bu发布了新的文献求助10
9秒前
心静完成签到,获得积分20
9秒前
啧啧发布了新的文献求助20
10秒前
yaya完成签到,获得积分10
10秒前
科研通AI6应助chunjianghua采纳,获得10
10秒前
量子星尘发布了新的文献求助50
12秒前
12秒前
吕方发布了新的文献求助30
12秒前
12秒前
Jasper应助XIA采纳,获得10
12秒前
chenjie发布了新的文献求助10
12秒前
英俊的铭应助机智平灵采纳,获得10
13秒前
雄杨发布了新的文献求助10
13秒前
我的白起是国服完成签到 ,获得积分10
13秒前
14秒前
15秒前
喃喃完成签到,获得积分10
15秒前
15秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5114368
求助须知:如何正确求助?哪些是违规求助? 4321651
关于积分的说明 13466439
捐赠科研通 4153360
什么是DOI,文献DOI怎么找? 2275740
邀请新用户注册赠送积分活动 1277730
关于科研通互助平台的介绍 1215701