亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MRI Radiogenomics of Pediatric Medulloblastoma: A Multicenter Study

医学 放射基因组学 髓母细胞瘤 曼惠特尼U检验 分类器(UML) 接收机工作特性 人工智能 二元分类 机器学习 肿瘤科 内科学 病理 放射科 无线电技术 计算机科学 支持向量机
作者
Michael Zhang,Samuel W Wong,Jason N. Wright,Matthias Wagner,Sebastian Toescu,Michelle Han,Lydia Tam,Quan Zhou,Saman Ahmadian,Katie Shpanskaya,Seth Lummus,Hollie Lai,Azam Eghbal,Alireza Radmanesh,Jordan Nemelka,Stephen C. Harward,Michael Malinzak,Suzanne Laughlin,Sébastien Perreault,Kristina R M Braun,Robert M. Lober,Yoon Jae Cho,Birgit Ertl‐Wagner,Chang Yueh Ho,Kshitij Mankad,Hannes Vogel,Samuel Cheshier,Thomas S. Jacques,Kristian Aquilina,Paul G. Fisher,Michael D. Taylor,Tina Young Poussaint,Nicholas A. Vitanza,Gerald A. Grant,Stefan M. Pfister,Eric M. Thompson,Alok Jaju,Vijay Ramaswamy,Kristen W. Yeom
出处
期刊:Radiology [Radiological Society of North America]
卷期号:304 (2): 406-416 被引量:40
标识
DOI:10.1148/radiol.212137
摘要

Background Radiogenomics of pediatric medulloblastoma (MB) offers an opportunity for MB risk stratification, which may aid therapeutic decision making, family counseling, and selection of patient groups suitable for targeted genetic analysis. Purpose To develop machine learning strategies that identify the four clinically significant MB molecular subgroups. Materials and Methods In this retrospective study, consecutive pediatric patients with newly diagnosed MB at MRI at 12 international pediatric sites between July 1997 and May 2020 were identified. There were 1800 features extracted from T2- and contrast-enhanced T1-weighted preoperative MRI scans. A two-stage sequential classifier was designed—one that first identifies non-wingless (WNT) and non–sonic hedgehog (SHH) MB and then differentiates therapeutically relevant WNT from SHH. Further, a classifier that distinguishes high-risk group 3 from group 4 MB was developed. An independent, binary subgroup analysis was conducted to uncover radiomics features unique to infantile versus childhood SHH subgroups. The best-performing models from six candidate classifiers were selected, and performance was measured on holdout test sets. CIs were obtained by bootstrapping the test sets for 2000 random samples. Model accuracy score was compared with the no-information rate using the Wald test. Results The study cohort comprised 263 patients (mean age ± SD at diagnosis, 87 months ± 60; 166 boys). A two-stage classifier outperformed a single-stage multiclass classifier. The combined, sequential classifier achieved a microaveraged F1 score of 88% and a binary F1 score of 95% specifically for WNT. A group 3 versus group 4 classifier achieved an area under the receiver operating characteristic curve of 98%. Of the Image Biomarker Standardization Initiative features, texture and first-order intensity features were most contributory across the molecular subgroups. Conclusion An MRI-based machine learning decision path allowed identification of the four clinically relevant molecular pediatric medulloblastoma subgroups. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Chaudhary and Bapuraj in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助朴实初夏采纳,获得10
4秒前
量子星尘发布了新的文献求助10
12秒前
18秒前
靖123456完成签到,获得积分10
20秒前
朴实初夏发布了新的文献求助10
23秒前
25秒前
靖123456发布了新的文献求助10
30秒前
量子星尘发布了新的文献求助10
30秒前
31秒前
情怀应助诚心的月光采纳,获得10
31秒前
34秒前
量子星尘发布了新的文献求助10
37秒前
科研通AI5应助天真咖啡豆采纳,获得10
38秒前
杰杰小杰发布了新的文献求助10
38秒前
46秒前
46秒前
斯文败类应助getgetting采纳,获得10
49秒前
50秒前
量子星尘发布了新的文献求助10
52秒前
53秒前
Makinosaito完成签到,获得积分10
56秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
CipherSage应助等待的若云采纳,获得10
1分钟前
1分钟前
依霏发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
SciGPT应助依霏采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
思源应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
英姑应助科研通管家采纳,获得10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
2分钟前
Owen应助yidinganshibiye采纳,获得10
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3660939
求助须知:如何正确求助?哪些是违规求助? 3222150
关于积分的说明 9743768
捐赠科研通 2931683
什么是DOI,文献DOI怎么找? 1605162
邀请新用户注册赠送积分活动 757705
科研通“疑难数据库(出版商)”最低求助积分说明 734462