已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MRI Radiogenomics of Pediatric Medulloblastoma: A Multicenter Study

医学 放射基因组学 髓母细胞瘤 曼惠特尼U检验 分类器(UML) 接收机工作特性 人工智能 二元分类 机器学习 肿瘤科 内科学 病理 放射科 无线电技术 计算机科学 支持向量机
作者
Michael Zhang,Samuel W Wong,Jason N. Wright,Matthias Wagner,Sebastian Toescu,Michelle Han,Lydia Tam,Quan Zhou,Saman Ahmadian,Katie Shpanskaya,Seth Lummus,Hollie Lai,Azam Eghbal,Alireza Radmanesh,Jordan Nemelka,Stephen C. Harward,Michael Malinzak,Suzanne Laughlin,Sébastien Perreault,Kristina R M Braun,Robert M. Lober,Yoon Jae Cho,Birgit Ertl‐Wagner,Chang Yueh Ho,Kshitij Mankad,Hannes Vogel,Samuel Cheshier,Thomas S. Jacques,Kristian Aquilina,Paul G. Fisher,Michael D. Taylor,Tina Young Poussaint,Nicholas A. Vitanza,Gerald A. Grant,Stefan M. Pfister,Eric M. Thompson,Alok Jaju,Vijay Ramaswamy,Kristen W. Yeom
出处
期刊:Radiology [Radiological Society of North America]
卷期号:304 (2): 406-416 被引量:40
标识
DOI:10.1148/radiol.212137
摘要

Background Radiogenomics of pediatric medulloblastoma (MB) offers an opportunity for MB risk stratification, which may aid therapeutic decision making, family counseling, and selection of patient groups suitable for targeted genetic analysis. Purpose To develop machine learning strategies that identify the four clinically significant MB molecular subgroups. Materials and Methods In this retrospective study, consecutive pediatric patients with newly diagnosed MB at MRI at 12 international pediatric sites between July 1997 and May 2020 were identified. There were 1800 features extracted from T2- and contrast-enhanced T1-weighted preoperative MRI scans. A two-stage sequential classifier was designed—one that first identifies non-wingless (WNT) and non–sonic hedgehog (SHH) MB and then differentiates therapeutically relevant WNT from SHH. Further, a classifier that distinguishes high-risk group 3 from group 4 MB was developed. An independent, binary subgroup analysis was conducted to uncover radiomics features unique to infantile versus childhood SHH subgroups. The best-performing models from six candidate classifiers were selected, and performance was measured on holdout test sets. CIs were obtained by bootstrapping the test sets for 2000 random samples. Model accuracy score was compared with the no-information rate using the Wald test. Results The study cohort comprised 263 patients (mean age ± SD at diagnosis, 87 months ± 60; 166 boys). A two-stage classifier outperformed a single-stage multiclass classifier. The combined, sequential classifier achieved a microaveraged F1 score of 88% and a binary F1 score of 95% specifically for WNT. A group 3 versus group 4 classifier achieved an area under the receiver operating characteristic curve of 98%. Of the Image Biomarker Standardization Initiative features, texture and first-order intensity features were most contributory across the molecular subgroups. Conclusion An MRI-based machine learning decision path allowed identification of the four clinically relevant molecular pediatric medulloblastoma subgroups. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Chaudhary and Bapuraj in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ni发布了新的文献求助10
3秒前
hh完成签到 ,获得积分10
4秒前
CR7发布了新的文献求助10
5秒前
7秒前
8秒前
陶醉的蜜蜂完成签到 ,获得积分10
9秒前
大树完成签到 ,获得积分10
10秒前
棠真完成签到 ,获得积分0
10秒前
Ni完成签到 ,获得积分20
11秒前
U87完成签到,获得积分10
12秒前
111完成签到 ,获得积分10
12秒前
CR7完成签到,获得积分10
12秒前
ROC发布了新的文献求助10
13秒前
郑zheng完成签到 ,获得积分10
15秒前
GingerF应助科研通管家采纳,获得50
17秒前
研友_VZG7GZ应助科研通管家采纳,获得10
17秒前
今后应助科研通管家采纳,获得10
17秒前
烟花应助科研通管家采纳,获得20
17秒前
充电宝应助科研通管家采纳,获得10
17秒前
Orange应助科研通管家采纳,获得10
17秒前
Owen应助牛哥采纳,获得10
17秒前
斯文败类应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
shanmao完成签到,获得积分10
17秒前
FashionBoy应助wise111采纳,获得10
19秒前
Sharif318完成签到,获得积分10
21秒前
爆米花应助Dragonfln采纳,获得10
22秒前
22秒前
24秒前
Jenny712发布了新的文献求助10
24秒前
26秒前
3D完成签到 ,获得积分10
29秒前
oldblack发布了新的文献求助10
30秒前
调皮的灰狼完成签到,获得积分10
31秒前
31秒前
32秒前
Dragonfln完成签到,获得积分10
32秒前
爱撒娇的妙竹完成签到,获得积分10
32秒前
wise111发布了新的文献求助10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356201
求助须知:如何正确求助?哪些是违规求助? 4488058
关于积分的说明 13971574
捐赠科研通 4388833
什么是DOI,文献DOI怎么找? 2411257
邀请新用户注册赠送积分活动 1403802
关于科研通互助平台的介绍 1377590