已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multicriteria semi-supervised hyperspectral band selection based on evolutionary multitask optimization

高光谱成像 计算机科学 判别式 冗余(工程) 人工智能 模式识别(心理学) 选择(遗传算法) 合并(版本控制) 光谱带 机器学习 多任务学习 任务(项目管理) 数据挖掘 遥感 地质学 操作系统 经济 管理 情报检索
作者
Jiao Shi,Xi Zhang,Xiaodong Liu,Yu Lei,Gwanggil Jeon
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:240: 107934-107934 被引量:25
标识
DOI:10.1016/j.knosys.2021.107934
摘要

Band selection is a direct and effective method to reduce the spectral dimension, which is one of popular topics in hyperspectral remote sensing. Compared with unsupervised band selection methods, semi-supervised methods seek not only informative but also discriminative band subset by using both labeled and unlabeled samples. However, most currently semi-supervised selection methods simply use a unified criterion on both labeled and unlabeled samples for searching optimal bands, which lacks sample pertinence and adds calculation burden. Since different samples possess different numerical characteristics, optimal criterion on these two kinds of samples may be different. Therefore, a method is required, which can concentrate on the characteristics of labeled and unlabeled samples providing different measure criteria to utilize samples more purposefully. In this paper, a multicriteria semi-supervised model is designed for hyperspectral images band selection. The model is established into two specific tasks: One task measures the amount of information and the redundancy contained in the selected bands from unlabeled samples, the other task utilizes the labeled samples to measure the discrimination of the selected bands. To optimize this model, a multitask optimization strategy is designed to merge the bands information and accelerate the speed of searching the promising bands. In addition, the de-duplication genetic operators are designed to fit the characteristics of hyperspectral images. In this way, the proposed multitask band selection method can select bands with high information, high discrimination, and low redundancy from hyperspectral data in an efficient way according to fully exploiting the numerical characteristics of both labeled and unlabeled samples. Experimental results show the superiority of the proposed method, and demonstrate that the proposed model works more efficiently than the comparison band selection methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助star采纳,获得10
2秒前
2秒前
蒙豆儿完成签到,获得积分10
2秒前
5秒前
蒙豆儿发布了新的文献求助10
6秒前
Bi8Bo完成签到,获得积分20
7秒前
fusheng完成签到 ,获得积分0
10秒前
luxiaoyu发布了新的文献求助10
11秒前
科研通AI5应助蒙豆儿采纳,获得10
13秒前
浮生完成签到 ,获得积分10
14秒前
榨菜完成签到,获得积分10
16秒前
17秒前
whr完成签到,获得积分10
19秒前
19秒前
star发布了新的文献求助10
21秒前
newplayer完成签到,获得积分10
24秒前
星辰大海应助luxiaoyu采纳,获得10
24秒前
31秒前
奇异果完成签到 ,获得积分10
32秒前
33秒前
chem-w发布了新的文献求助10
34秒前
36秒前
37秒前
39秒前
Benjamin完成签到 ,获得积分10
40秒前
健壮惋清完成签到 ,获得积分10
40秒前
40秒前
CC关注了科研通微信公众号
41秒前
42秒前
G1997完成签到 ,获得积分10
42秒前
UUU完成签到 ,获得积分10
44秒前
wbs13521完成签到,获得积分0
44秒前
非蛋白呼吸商完成签到,获得积分10
45秒前
chem-w完成签到,获得积分10
46秒前
zzz发布了新的文献求助10
47秒前
Wang_JN完成签到 ,获得积分10
49秒前
51秒前
53秒前
zzz完成签到,获得积分20
54秒前
lhtyzcg完成签到,获得积分10
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4581296
求助须知:如何正确求助?哪些是违规求助? 3999257
关于积分的说明 12380990
捐赠科研通 3673853
什么是DOI,文献DOI怎么找? 2024781
邀请新用户注册赠送积分活动 1058580
科研通“疑难数据库(出版商)”最低求助积分说明 945299