亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multicriteria semi-supervised hyperspectral band selection based on evolutionary multitask optimization

高光谱成像 计算机科学 判别式 冗余(工程) 人工智能 模式识别(心理学) 选择(遗传算法) 合并(版本控制) 光谱带 机器学习 多任务学习 任务(项目管理) 数据挖掘 遥感 地质学 操作系统 经济 管理 情报检索
作者
Jiao Shi,Xi Zhang,Xiaodong Liu,Yu Lei,Gwanggil Jeon
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:240: 107934-107934 被引量:25
标识
DOI:10.1016/j.knosys.2021.107934
摘要

Band selection is a direct and effective method to reduce the spectral dimension, which is one of popular topics in hyperspectral remote sensing. Compared with unsupervised band selection methods, semi-supervised methods seek not only informative but also discriminative band subset by using both labeled and unlabeled samples. However, most currently semi-supervised selection methods simply use a unified criterion on both labeled and unlabeled samples for searching optimal bands, which lacks sample pertinence and adds calculation burden. Since different samples possess different numerical characteristics, optimal criterion on these two kinds of samples may be different. Therefore, a method is required, which can concentrate on the characteristics of labeled and unlabeled samples providing different measure criteria to utilize samples more purposefully. In this paper, a multicriteria semi-supervised model is designed for hyperspectral images band selection. The model is established into two specific tasks: One task measures the amount of information and the redundancy contained in the selected bands from unlabeled samples, the other task utilizes the labeled samples to measure the discrimination of the selected bands. To optimize this model, a multitask optimization strategy is designed to merge the bands information and accelerate the speed of searching the promising bands. In addition, the de-duplication genetic operators are designed to fit the characteristics of hyperspectral images. In this way, the proposed multitask band selection method can select bands with high information, high discrimination, and low redundancy from hyperspectral data in an efficient way according to fully exploiting the numerical characteristics of both labeled and unlabeled samples. Experimental results show the superiority of the proposed method, and demonstrate that the proposed model works more efficiently than the comparison band selection methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SCINEXUS完成签到,获得积分0
3秒前
4秒前
量子星尘发布了新的文献求助10
10秒前
老迟到的梦旋完成签到 ,获得积分10
35秒前
50秒前
负责以山完成签到 ,获得积分10
54秒前
科研通AI5应助科研通管家采纳,获得10
55秒前
cc应助科研通管家采纳,获得10
55秒前
一只小锦鲤完成签到 ,获得积分10
1分钟前
西山菩提完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助20
2分钟前
lixuebin完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
sujingbo发布了新的文献求助100
2分钟前
sofardli发布了新的文献求助10
2分钟前
2分钟前
charliechen完成签到 ,获得积分10
3分钟前
sofardli完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
嗯嗯嗯哦哦哦完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
碗碗豆喵完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
贝儿发布了新的文献求助10
4分钟前
大模型应助贝儿采纳,获得10
5分钟前
矮小的珠发布了新的文献求助10
5分钟前
小二郎应助矮小的珠采纳,获得10
5分钟前
5分钟前
阿超完成签到 ,获得积分10
5分钟前
量子星尘发布了新的文献求助10
6分钟前
maria_takayama完成签到,获得积分10
6分钟前
6分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957065
求助须知:如何正确求助?哪些是违规求助? 3503084
关于积分的说明 11111255
捐赠科研通 3234124
什么是DOI,文献DOI怎么找? 1787751
邀请新用户注册赠送积分活动 870772
科研通“疑难数据库(出版商)”最低求助积分说明 802264