Multicriteria semi-supervised hyperspectral band selection based on evolutionary multitask optimization

高光谱成像 计算机科学 判别式 冗余(工程) 人工智能 模式识别(心理学) 选择(遗传算法) 合并(版本控制) 光谱带 机器学习 多任务学习 任务(项目管理) 数据挖掘 遥感 情报检索 地质学 管理 经济 操作系统
作者
Jiao Shi,Xi Zhang,Xiaodong Liu,Yu Lei,Gwanggil Jeon
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:240: 107934-107934 被引量:25
标识
DOI:10.1016/j.knosys.2021.107934
摘要

Band selection is a direct and effective method to reduce the spectral dimension, which is one of popular topics in hyperspectral remote sensing. Compared with unsupervised band selection methods, semi-supervised methods seek not only informative but also discriminative band subset by using both labeled and unlabeled samples. However, most currently semi-supervised selection methods simply use a unified criterion on both labeled and unlabeled samples for searching optimal bands, which lacks sample pertinence and adds calculation burden. Since different samples possess different numerical characteristics, optimal criterion on these two kinds of samples may be different. Therefore, a method is required, which can concentrate on the characteristics of labeled and unlabeled samples providing different measure criteria to utilize samples more purposefully. In this paper, a multicriteria semi-supervised model is designed for hyperspectral images band selection. The model is established into two specific tasks: One task measures the amount of information and the redundancy contained in the selected bands from unlabeled samples, the other task utilizes the labeled samples to measure the discrimination of the selected bands. To optimize this model, a multitask optimization strategy is designed to merge the bands information and accelerate the speed of searching the promising bands. In addition, the de-duplication genetic operators are designed to fit the characteristics of hyperspectral images. In this way, the proposed multitask band selection method can select bands with high information, high discrimination, and low redundancy from hyperspectral data in an efficient way according to fully exploiting the numerical characteristics of both labeled and unlabeled samples. Experimental results show the superiority of the proposed method, and demonstrate that the proposed model works more efficiently than the comparison band selection methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
苹果煎饼发布了新的文献求助10
1秒前
ai77qi发布了新的文献求助10
1秒前
2秒前
研友_VZG7GZ应助zh采纳,获得10
2秒前
2秒前
3秒前
金磊完成签到,获得积分10
3秒前
hailiangzheng发布了新的文献求助10
3秒前
传奇3应助调皮帆布鞋采纳,获得10
4秒前
percy完成签到 ,获得积分10
4秒前
4秒前
林小雨发布了新的文献求助10
5秒前
Bellona完成签到,获得积分10
5秒前
清嘉完成签到,获得积分10
5秒前
ZZY完成签到,获得积分10
6秒前
6秒前
魁梧的钧发布了新的文献求助20
6秒前
Fishchips发布了新的文献求助10
6秒前
6秒前
SciGPT应助tS717采纳,获得10
7秒前
自觉的涵易完成签到 ,获得积分10
7秒前
Hello应助自由南珍采纳,获得10
8秒前
苹果煎饼完成签到,获得积分10
9秒前
9秒前
杨小冬发布了新的文献求助10
9秒前
倒霉蛋完成签到,获得积分10
10秒前
庄严发布了新的文献求助10
10秒前
2401发布了新的文献求助10
10秒前
10秒前
10秒前
zhaoqing完成签到,获得积分10
11秒前
11秒前
充电宝应助han采纳,获得10
12秒前
13秒前
ajiduo发布了新的文献求助10
14秒前
聿潇发布了新的文献求助10
15秒前
15秒前
华枝春满发布了新的文献求助10
15秒前
Islet1810发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5406668
求助须知:如何正确求助?哪些是违规求助? 4524470
关于积分的说明 14098590
捐赠科研通 4438297
什么是DOI,文献DOI怎么找? 2436104
邀请新用户注册赠送积分活动 1428223
关于科研通互助平台的介绍 1406294