Tracking the Oxygen Dynamics of Solid–Liquid Electrochemical Interfaces by Correlative In Situ Synchrotron Spectroscopies

电催化剂 析氧 电化学 X射线吸收精细结构 傅里叶变换红外光谱 化学 电化学能量转换 化学工程 材料科学 电极 纳米技术 化学物理 光谱学 物理化学 物理 量子力学 工程类
作者
Weiren Cheng,Hui Su,Qinghua Liu
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:55 (14): 1949-1959 被引量:75
标识
DOI:10.1021/acs.accounts.2c00239
摘要

ConspectusOxygen-involved electrocatalytic processes, including the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), are central to a series of advanced modern energy and conversion technologies, such as water electrolyzers, fuel cells, and CO2 reduction or N2 fixation devices. A comprehensive and in-depth understanding of the charge transfer and energy conversion process that ubiquitously occurs over solid–liquid electrochemical interfaces during oxygen electrocatalysis is crucial for understanding the key essence of oxygen-related electrochemistry. The huge challenges for dynamic studies over solid–liquid interfaces during oxygen electrocatalysis lie in the all-embracing electrochemical processes of the catalytic reactions, associated with both structural and reactive intermediates evolution on the electrode surface, and in the significant influence of the aqueous environments of electrolytes used. Hence, overcoming these challenges intrinsically calls for a great cooperation of multiple cutting-edge in situ technologies. Synchrotron radiation (SR) X-ray absorption fine structure (SR-XAFS) spectroscopy is highly sensitive to the local atomic structure of nanomaterials, and SR-based Fourier transform infrared (SR-FTIR) spectroscopy features unique molecular fingerprint identification to determine active species on the surface of electrodes. One can imagine that the correlative in situ SR-XAFS/FTIR spectroscopic investigations will potentially provide sufficient, reliable, and complementary information at the atomic/molecular level to depict vivid and comprehensive "dynamic movies" of solid–liquid electrochemical interfaces during oxygen electrocatalysis, which will help effectively promote/simplify the complicated screening process of advanced oxygen electrocatalysts for efficient high-energy-density energy systems.In this Account, starting with some fundamentals of SR-based spectroscopic technologies, tips for obtaining high-quality SR-XAFS and SR-FTIR spectroscopy results during the electrocatalytic process are comprehensively specified. Subsequently, the latest research achievements of dynamic investigations mainly from our group based on in situ SR-XAFS and/or SR-FTIR spectroscopies will be systematically scrutinized and properly emphasized in detail, where the currently attractive metal–organic–framework (MOF) nanomaterials and single-atom catalysts (SACs) are selected as the main object of research. Moreover, the vital contributions of correlative in situ SR-XAFS/FTIR studies on new discoveries of the dynamic evolution of solid–liquid interfaces during oxygen electrocatalysis are highlighted. In particular, our pioneering research found that the potential-dependent dynamically coupled oxygen formed in the precatalytic stage was a very useful promoter in SACs to promote efficient OER kinetics under acidic conditions. In addition, the in situ generated metastable Ni1–N2 centers with more structural degrees of freedom in SACs could potentially facilitate the fast 4e– ORR kinetics. This Account is anticipated to stimulate broad interest in dynamic explorations in various catalytic processes of interest in the material science and electrochemistry communities using correlative SR-based technologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
111完成签到,获得积分10
1秒前
1秒前
2秒前
星月应助仲谋采纳,获得10
2秒前
PhD完成签到,获得积分10
2秒前
科研通AI6应助虚心千凡采纳,获得10
2秒前
3秒前
when完成签到 ,获得积分10
3秒前
3秒前
4秒前
dgz完成签到,获得积分10
4秒前
雅雅完成签到 ,获得积分10
5秒前
小二郎应助湿地小怪兽采纳,获得10
5秒前
5秒前
ding应助自由寻冬采纳,获得10
5秒前
6秒前
6秒前
Yu发布了新的文献求助10
6秒前
8秒前
鳗鱼鞋垫发布了新的文献求助10
8秒前
儒雅晓霜完成签到,获得积分10
8秒前
9秒前
10秒前
时尚觅松发布了新的文献求助10
10秒前
zzz完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
112450195完成签到,获得积分10
11秒前
低调小狗发布了新的文献求助10
11秒前
as_eichi完成签到,获得积分10
12秒前
充电宝应助小池采纳,获得10
12秒前
ding应助贰什柒采纳,获得10
12秒前
要减肥的鹤完成签到,获得积分10
12秒前
小蘑菇应助li采纳,获得10
13秒前
13秒前
14秒前
kkk完成签到,获得积分10
14秒前
14秒前
14秒前
李子完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653573
求助须知:如何正确求助?哪些是违规求助? 4790162
关于积分的说明 15064753
捐赠科研通 4812180
什么是DOI,文献DOI怎么找? 2574341
邀请新用户注册赠送积分活动 1529955
关于科研通互助平台的介绍 1488680