亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comparative study of evolutionary artificial intelligence approaches to predict the rheological properties of fresh concrete

流变学 材料科学 均方误差 决定系数 决策树 统计 结构工程
作者
Sohaib Nazar,Jian Yang,Ayaz Ahmad,Syed Farasat Ali Shah
出处
期刊:Materials today communications [Elsevier BV]
卷期号:32: 103964-103964
标识
DOI:10.1016/j.mtcomm.2022.103964
摘要

Rheology has been an essential tool to control the fresh state properties of concrete in case of self-compacting concrete, 3d printing of concrete, and ultra-high-performance concrete. Through proper control of rheology, it is possible to achieve desire green strength concrete and free from honeycombing, bleeding, and segregation for self-compacting concrete. The rheological properties of concrete were investigated in the study with the application of machine learning methods. The decision tree (DT) and bagging regressor (BR) were employed to predict the plastic viscosity (PV) and yield stress (YS) of the concrete with various mixes. Total 140 data points (mixes) for concrete were used to the run the selected models to obtain the forecasted result for both PV and YS. Six input variables were used for running the models for two outcomes (PV and YS). Results revealed that the BR was more effective in term of predicting both properties PV and YS of concrete by indicating the coefficient of determination values 0.90 and 0.95, respectively. However, the said results for PV (0.90) and YS (0.93) from DT model was also satisfactory. The lesser values of the errors, root mean square error, mean square error, mean absolute error and the indication of high performance of the BR towards the prediction. The sensitivity analysis reflected the importance of each parameter with water and gravels having more than 50 % impact on PV output values, while for YS, both medium and small size gravels were found having impact more than 65 %. The statistical checks and method of k-fold cross over validation also confirms the accuracy of models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
14秒前
21秒前
熬夜猝死的我完成签到,获得积分10
32秒前
lzxbarry完成签到,获得积分0
45秒前
55秒前
1分钟前
Ysn发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
梦想家发布了新的文献求助10
1分钟前
2分钟前
Ava应助科研通管家采纳,获得10
2分钟前
Virtual应助科研通管家采纳,获得10
2分钟前
2分钟前
xiaolang2004完成签到,获得积分10
3分钟前
3分钟前
mickaqi完成签到 ,获得积分10
4分钟前
fhw完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
norberta发布了新的文献求助10
4分钟前
MchemG应助科研通管家采纳,获得30
4分钟前
KSung完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
Hvginn发布了新的文献求助10
5分钟前
5分钟前
灵巧灵松发布了新的文献求助10
5分钟前
Zzz_Carlos完成签到 ,获得积分10
5分钟前
灵巧灵松完成签到,获得积分20
6分钟前
6分钟前
6分钟前
桦奕兮完成签到 ,获得积分10
6分钟前
JrPaleo101完成签到,获得积分10
7分钟前
7分钟前
7分钟前
ljl86400完成签到,获得积分10
8分钟前
Owen应助科研通管家采纳,获得10
8分钟前
赘婿应助科研通管家采纳,获得10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4568866
求助须知:如何正确求助?哪些是违规求助? 3991276
关于积分的说明 12355594
捐赠科研通 3663388
什么是DOI,文献DOI怎么找? 2018871
邀请新用户注册赠送积分活动 1053272
科研通“疑难数据库(出版商)”最低求助积分说明 940874