Comparative study of evolutionary artificial intelligence approaches to predict the rheological properties of fresh concrete

流变学 材料科学 均方误差 决定系数 决策树 统计 结构工程
作者
Sohaib Nazar,Jian Yang,Ayaz Ahmad,Syed Farasat Ali Shah
出处
期刊:Materials today communications [Elsevier]
卷期号:32: 103964-103964
标识
DOI:10.1016/j.mtcomm.2022.103964
摘要

Rheology has been an essential tool to control the fresh state properties of concrete in case of self-compacting concrete, 3d printing of concrete, and ultra-high-performance concrete. Through proper control of rheology, it is possible to achieve desire green strength concrete and free from honeycombing, bleeding, and segregation for self-compacting concrete. The rheological properties of concrete were investigated in the study with the application of machine learning methods. The decision tree (DT) and bagging regressor (BR) were employed to predict the plastic viscosity (PV) and yield stress (YS) of the concrete with various mixes. Total 140 data points (mixes) for concrete were used to the run the selected models to obtain the forecasted result for both PV and YS. Six input variables were used for running the models for two outcomes (PV and YS). Results revealed that the BR was more effective in term of predicting both properties PV and YS of concrete by indicating the coefficient of determination values 0.90 and 0.95, respectively. However, the said results for PV (0.90) and YS (0.93) from DT model was also satisfactory. The lesser values of the errors, root mean square error, mean square error, mean absolute error and the indication of high performance of the BR towards the prediction. The sensitivity analysis reflected the importance of each parameter with water and gravels having more than 50 % impact on PV output values, while for YS, both medium and small size gravels were found having impact more than 65 %. The statistical checks and method of k-fold cross over validation also confirms the accuracy of models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
钟小凯完成签到 ,获得积分10
1秒前
丘比波比关注了科研通微信公众号
1秒前
丁仪完成签到,获得积分10
1秒前
下雨天的树完成签到 ,获得积分10
2秒前
科研通AI6应助tttt采纳,获得10
2秒前
zgd发布了新的文献求助10
3秒前
-17完成签到 ,获得积分10
3秒前
3秒前
yummy完成签到 ,获得积分10
3秒前
4秒前
4秒前
莫羽倾尘发布了新的文献求助10
5秒前
思源应助香蕉幻桃采纳,获得10
6秒前
biohydrogel完成签到,获得积分10
6秒前
leotao完成签到,获得积分10
6秒前
菲菲发布了新的文献求助10
7秒前
充电宝应助Trent采纳,获得10
8秒前
快乐的小翠完成签到,获得积分20
8秒前
lilian发布了新的文献求助10
8秒前
8秒前
Noblesj发布了新的文献求助10
9秒前
清脆的飞丹完成签到,获得积分10
10秒前
仙兮熙完成签到 ,获得积分10
11秒前
梓树发布了新的文献求助10
11秒前
兜兜完成签到,获得积分10
12秒前
可爱多完成签到,获得积分10
12秒前
Fan发布了新的文献求助10
13秒前
胡涂图完成签到 ,获得积分10
13秒前
he完成签到 ,获得积分10
13秒前
香蕉幻桃完成签到,获得积分20
14秒前
jiuwu完成签到,获得积分10
15秒前
15秒前
谦让的博完成签到,获得积分10
16秒前
16秒前
16秒前
阳佟水蓉完成签到,获得积分10
17秒前
香蕉幻桃发布了新的文献求助10
17秒前
香蕉觅云应助孤独的冰彤采纳,获得10
18秒前
19秒前
HAL完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600432
求助须知:如何正确求助?哪些是违规求助? 4686051
关于积分的说明 14841577
捐赠科研通 4676571
什么是DOI,文献DOI怎么找? 2538725
邀请新用户注册赠送积分活动 1505789
关于科研通互助平台的介绍 1471195