Comparative study of evolutionary artificial intelligence approaches to predict the rheological properties of fresh concrete

流变学 材料科学 均方误差 决定系数 决策树 统计 结构工程
作者
Sohaib Nazar,Jian Yang,Ayaz Ahmad,Syed Farasat Ali Shah
出处
期刊:Materials today communications [Elsevier]
卷期号:32: 103964-103964
标识
DOI:10.1016/j.mtcomm.2022.103964
摘要

Rheology has been an essential tool to control the fresh state properties of concrete in case of self-compacting concrete, 3d printing of concrete, and ultra-high-performance concrete. Through proper control of rheology, it is possible to achieve desire green strength concrete and free from honeycombing, bleeding, and segregation for self-compacting concrete. The rheological properties of concrete were investigated in the study with the application of machine learning methods. The decision tree (DT) and bagging regressor (BR) were employed to predict the plastic viscosity (PV) and yield stress (YS) of the concrete with various mixes. Total 140 data points (mixes) for concrete were used to the run the selected models to obtain the forecasted result for both PV and YS. Six input variables were used for running the models for two outcomes (PV and YS). Results revealed that the BR was more effective in term of predicting both properties PV and YS of concrete by indicating the coefficient of determination values 0.90 and 0.95, respectively. However, the said results for PV (0.90) and YS (0.93) from DT model was also satisfactory. The lesser values of the errors, root mean square error, mean square error, mean absolute error and the indication of high performance of the BR towards the prediction. The sensitivity analysis reflected the importance of each parameter with water and gravels having more than 50 % impact on PV output values, while for YS, both medium and small size gravels were found having impact more than 65 %. The statistical checks and method of k-fold cross over validation also confirms the accuracy of models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tinna发布了新的文献求助10
2秒前
核桃发布了新的文献求助10
3秒前
CodeCraft应助zzy采纳,获得10
3秒前
4秒前
泼墨漓江发布了新的文献求助10
4秒前
5秒前
5秒前
董zh完成签到,获得积分10
7秒前
章鱼发布了新的文献求助10
8秒前
gj2221423发布了新的文献求助10
8秒前
jjyy发布了新的文献求助10
8秒前
9秒前
9秒前
香蕉觅云应助王佳俊采纳,获得10
10秒前
研究僧完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
14秒前
Nell发布了新的文献求助10
15秒前
壮观缘分发布了新的文献求助10
15秒前
15秒前
科研小狗完成签到 ,获得积分10
16秒前
羊玉林发布了新的文献求助10
16秒前
www完成签到,获得积分10
16秒前
18秒前
18秒前
快乐保温杯完成签到 ,获得积分10
19秒前
19秒前
隐形饼干完成签到 ,获得积分10
20秒前
向日葵完成签到,获得积分10
20秒前
坚定紫山发布了新的文献求助10
20秒前
科研努力发布了新的文献求助10
20秒前
连lian发布了新的文献求助30
22秒前
多情的绮波完成签到,获得积分20
22秒前
22秒前
23秒前
研友_VZG7GZ应助悲伤汉堡包采纳,获得10
23秒前
zzy发布了新的文献求助10
24秒前
大翟发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588775
求助须知:如何正确求助?哪些是违规求助? 4671698
关于积分的说明 14788654
捐赠科研通 4626241
什么是DOI,文献DOI怎么找? 2531957
邀请新用户注册赠送积分活动 1500530
关于科研通互助平台的介绍 1468329