Comparative study of evolutionary artificial intelligence approaches to predict the rheological properties of fresh concrete

流变学 材料科学 均方误差 决定系数 决策树 统计 结构工程
作者
Sohaib Nazar,Jian Yang,Ayaz Ahmad,Syed Farasat Ali Shah
出处
期刊:Materials today communications [Elsevier]
卷期号:32: 103964-103964
标识
DOI:10.1016/j.mtcomm.2022.103964
摘要

Rheology has been an essential tool to control the fresh state properties of concrete in case of self-compacting concrete, 3d printing of concrete, and ultra-high-performance concrete. Through proper control of rheology, it is possible to achieve desire green strength concrete and free from honeycombing, bleeding, and segregation for self-compacting concrete. The rheological properties of concrete were investigated in the study with the application of machine learning methods. The decision tree (DT) and bagging regressor (BR) were employed to predict the plastic viscosity (PV) and yield stress (YS) of the concrete with various mixes. Total 140 data points (mixes) for concrete were used to the run the selected models to obtain the forecasted result for both PV and YS. Six input variables were used for running the models for two outcomes (PV and YS). Results revealed that the BR was more effective in term of predicting both properties PV and YS of concrete by indicating the coefficient of determination values 0.90 and 0.95, respectively. However, the said results for PV (0.90) and YS (0.93) from DT model was also satisfactory. The lesser values of the errors, root mean square error, mean square error, mean absolute error and the indication of high performance of the BR towards the prediction. The sensitivity analysis reflected the importance of each parameter with water and gravels having more than 50 % impact on PV output values, while for YS, both medium and small size gravels were found having impact more than 65 %. The statistical checks and method of k-fold cross over validation also confirms the accuracy of models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Aoops完成签到,获得积分10
刚刚
猫小猪发布了新的文献求助10
刚刚
辞镜发布了新的文献求助10
刚刚
小二郎应助丰富如南采纳,获得10
1秒前
bkagyin应助1_1采纳,获得10
1秒前
王煊完成签到,获得积分10
2秒前
小蘑菇应助小余同学采纳,获得10
2秒前
2秒前
科研通AI6应助热情无心采纳,获得10
2秒前
3秒前
3秒前
英俊的铭应助xiao采纳,获得10
3秒前
Owen应助猫小猪采纳,获得10
4秒前
xmcx25完成签到,获得积分10
5秒前
5秒前
玲℃发布了新的文献求助10
5秒前
123发布了新的文献求助10
5秒前
王煊发布了新的文献求助10
6秒前
思源应助风语村采纳,获得10
6秒前
赵佩奇发布了新的文献求助10
7秒前
格格巫发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
xinxin完成签到,获得积分10
8秒前
Daniel完成签到,获得积分10
10秒前
10秒前
TiY完成签到,获得积分10
11秒前
qu发布了新的文献求助10
11秒前
13秒前
14秒前
14秒前
汉堡包应助免疫方舟采纳,获得10
14秒前
搬砖民工发布了新的文献求助10
14秒前
14秒前
14秒前
1_1发布了新的文献求助10
14秒前
15秒前
香蕉觅云应助xht采纳,获得30
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5287232
求助须知:如何正确求助?哪些是违规求助? 4439680
关于积分的说明 13822419
捐赠科研通 4321690
什么是DOI,文献DOI怎么找? 2372100
邀请新用户注册赠送积分活动 1367648
关于科研通互助平台的介绍 1331104