Comparative study of evolutionary artificial intelligence approaches to predict the rheological properties of fresh concrete

流变学 材料科学 均方误差 决定系数 决策树 统计 结构工程
作者
Sohaib Nazar,Jian Yang,Ayaz Ahmad,Syed Farasat Ali Shah
出处
期刊:Materials today communications [Elsevier]
卷期号:32: 103964-103964
标识
DOI:10.1016/j.mtcomm.2022.103964
摘要

Rheology has been an essential tool to control the fresh state properties of concrete in case of self-compacting concrete, 3d printing of concrete, and ultra-high-performance concrete. Through proper control of rheology, it is possible to achieve desire green strength concrete and free from honeycombing, bleeding, and segregation for self-compacting concrete. The rheological properties of concrete were investigated in the study with the application of machine learning methods. The decision tree (DT) and bagging regressor (BR) were employed to predict the plastic viscosity (PV) and yield stress (YS) of the concrete with various mixes. Total 140 data points (mixes) for concrete were used to the run the selected models to obtain the forecasted result for both PV and YS. Six input variables were used for running the models for two outcomes (PV and YS). Results revealed that the BR was more effective in term of predicting both properties PV and YS of concrete by indicating the coefficient of determination values 0.90 and 0.95, respectively. However, the said results for PV (0.90) and YS (0.93) from DT model was also satisfactory. The lesser values of the errors, root mean square error, mean square error, mean absolute error and the indication of high performance of the BR towards the prediction. The sensitivity analysis reflected the importance of each parameter with water and gravels having more than 50 % impact on PV output values, while for YS, both medium and small size gravels were found having impact more than 65 %. The statistical checks and method of k-fold cross over validation also confirms the accuracy of models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhhhhhh发布了新的文献求助10
刚刚
长情洙完成签到,获得积分10
1秒前
Lilac完成签到 ,获得积分10
1秒前
1秒前
1秒前
MissXia完成签到,获得积分10
1秒前
NUNKI完成签到,获得积分10
1秒前
迅速星星完成签到,获得积分10
1秒前
科研废物发布了新的文献求助10
2秒前
ltc完成签到,获得积分10
2秒前
科研通AI5应助诚c采纳,获得10
2秒前
Mrrr发布了新的文献求助10
2秒前
sganthem完成签到,获得积分10
2秒前
3秒前
哦吼完成签到,获得积分10
3秒前
3秒前
lm发布了新的文献求助10
4秒前
月白发布了新的文献求助10
4秒前
π.完成签到,获得积分10
5秒前
5秒前
李健应助长情洙采纳,获得10
5秒前
5秒前
科研小白完成签到,获得积分10
6秒前
6秒前
RandyD发布了新的文献求助10
6秒前
6秒前
最最最发布了新的文献求助10
6秒前
7秒前
π.发布了新的文献求助10
7秒前
8秒前
yangyangyang发布了新的文献求助10
8秒前
siccy完成签到 ,获得积分10
8秒前
图南关注了科研通微信公众号
9秒前
我是老大应助Mrrr采纳,获得10
9秒前
ZTT发布了新的文献求助10
9秒前
调皮的凝旋完成签到,获得积分10
9秒前
JiangY完成签到,获得积分10
9秒前
妮妮爱smile完成签到,获得积分10
10秒前
咕噜仔发布了新的文献求助10
10秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759