亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comparative study of evolutionary artificial intelligence approaches to predict the rheological properties of fresh concrete

流变学 材料科学 均方误差 决定系数 决策树 统计 结构工程
作者
Sohaib Nazar,Jian Yang,Ayaz Ahmad,Syed Farasat Ali Shah
出处
期刊:Materials today communications [Elsevier BV]
卷期号:32: 103964-103964
标识
DOI:10.1016/j.mtcomm.2022.103964
摘要

Rheology has been an essential tool to control the fresh state properties of concrete in case of self-compacting concrete, 3d printing of concrete, and ultra-high-performance concrete. Through proper control of rheology, it is possible to achieve desire green strength concrete and free from honeycombing, bleeding, and segregation for self-compacting concrete. The rheological properties of concrete were investigated in the study with the application of machine learning methods. The decision tree (DT) and bagging regressor (BR) were employed to predict the plastic viscosity (PV) and yield stress (YS) of the concrete with various mixes. Total 140 data points (mixes) for concrete were used to the run the selected models to obtain the forecasted result for both PV and YS. Six input variables were used for running the models for two outcomes (PV and YS). Results revealed that the BR was more effective in term of predicting both properties PV and YS of concrete by indicating the coefficient of determination values 0.90 and 0.95, respectively. However, the said results for PV (0.90) and YS (0.93) from DT model was also satisfactory. The lesser values of the errors, root mean square error, mean square error, mean absolute error and the indication of high performance of the BR towards the prediction. The sensitivity analysis reflected the importance of each parameter with water and gravels having more than 50 % impact on PV output values, while for YS, both medium and small size gravels were found having impact more than 65 %. The statistical checks and method of k-fold cross over validation also confirms the accuracy of models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
7秒前
ww发布了新的文献求助10
12秒前
ww发布了新的文献求助10
33秒前
45秒前
45秒前
依霏发布了新的文献求助10
48秒前
56秒前
shenglue发布了新的文献求助10
1分钟前
丘比特应助依霏采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
rrrrrrry发布了新的文献求助20
1分钟前
ww发布了新的文献求助20
1分钟前
岁和景明完成签到 ,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
fenfen发布了新的文献求助10
2分钟前
xuan发布了新的文献求助10
2分钟前
ww发布了新的文献求助10
2分钟前
xuan完成签到,获得积分10
2分钟前
大模型应助fenfen采纳,获得10
3分钟前
我是站长才怪应助西子阳采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
我是站长才怪给twotwomi的求助进行了留言
3分钟前
4分钟前
Lucas应助科研通管家采纳,获得10
4分钟前
英俊的铭应助科研通管家采纳,获得10
4分钟前
ww发布了新的文献求助10
4分钟前
4分钟前
4分钟前
ww发布了新的文献求助10
4分钟前
cyclone发布了新的文献求助10
4分钟前
Sandy发布了新的文献求助10
4分钟前
科研通AI5应助cyclone采纳,获得10
5分钟前
我是站长才怪给twotwomi的求助进行了留言
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015073
求助须知:如何正确求助?哪些是违规求助? 3555011
关于积分的说明 11317842
捐赠科研通 3288529
什么是DOI,文献DOI怎么找? 1812249
邀请新用户注册赠送积分活动 887869
科研通“疑难数据库(出版商)”最低求助积分说明 811983