Comparative study of evolutionary artificial intelligence approaches to predict the rheological properties of fresh concrete

流变学 材料科学 均方误差 决定系数 决策树 统计 结构工程
作者
Sohaib Nazar,Jian Yang,Ayaz Ahmad,Syed Farasat Ali Shah
出处
期刊:Materials today communications [Elsevier]
卷期号:32: 103964-103964
标识
DOI:10.1016/j.mtcomm.2022.103964
摘要

Rheology has been an essential tool to control the fresh state properties of concrete in case of self-compacting concrete, 3d printing of concrete, and ultra-high-performance concrete. Through proper control of rheology, it is possible to achieve desire green strength concrete and free from honeycombing, bleeding, and segregation for self-compacting concrete. The rheological properties of concrete were investigated in the study with the application of machine learning methods. The decision tree (DT) and bagging regressor (BR) were employed to predict the plastic viscosity (PV) and yield stress (YS) of the concrete with various mixes. Total 140 data points (mixes) for concrete were used to the run the selected models to obtain the forecasted result for both PV and YS. Six input variables were used for running the models for two outcomes (PV and YS). Results revealed that the BR was more effective in term of predicting both properties PV and YS of concrete by indicating the coefficient of determination values 0.90 and 0.95, respectively. However, the said results for PV (0.90) and YS (0.93) from DT model was also satisfactory. The lesser values of the errors, root mean square error, mean square error, mean absolute error and the indication of high performance of the BR towards the prediction. The sensitivity analysis reflected the importance of each parameter with water and gravels having more than 50 % impact on PV output values, while for YS, both medium and small size gravels were found having impact more than 65 %. The statistical checks and method of k-fold cross over validation also confirms the accuracy of models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
申申发布了新的文献求助10
刚刚
1秒前
不安海蓝完成签到,获得积分10
1秒前
1111111111111发布了新的文献求助10
2秒前
千里江山一只蝇完成签到,获得积分10
2秒前
吴彦祖完成签到,获得积分10
3秒前
繁荣的凡完成签到 ,获得积分10
3秒前
xu发布了新的文献求助10
6秒前
6秒前
几一昂完成签到 ,获得积分10
7秒前
9秒前
xu完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
14秒前
香蕉觅云应助xu采纳,获得10
15秒前
nqterysc完成签到,获得积分10
15秒前
wang完成签到 ,获得积分10
16秒前
17秒前
无花果应助月月采纳,获得10
20秒前
22秒前
我要当博士完成签到,获得积分10
23秒前
jia完成签到,获得积分10
24秒前
lbl发布了新的文献求助10
27秒前
电四拟完成签到 ,获得积分10
29秒前
susu发布了新的文献求助10
30秒前
Wnn完成签到 ,获得积分10
30秒前
Hello应助聪慧的正豪采纳,获得10
31秒前
引觞甫完成签到,获得积分10
32秒前
33秒前
Hello应助lbl采纳,获得10
34秒前
崔灿完成签到 ,获得积分10
35秒前
量子星尘发布了新的文献求助10
37秒前
lv发布了新的文献求助10
37秒前
FashionBoy应助落雪芊芊采纳,获得10
37秒前
38秒前
jlb关闭了jlb文献求助
38秒前
Physio发布了新的文献求助10
39秒前
wyq完成签到 ,获得积分10
41秒前
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603979
求助须知:如何正确求助?哪些是违规求助? 4688823
关于积分的说明 14856475
捐赠科研通 4695849
什么是DOI,文献DOI怎么找? 2541066
邀请新用户注册赠送积分活动 1507256
关于科研通互助平台的介绍 1471832