Comparative study of evolutionary artificial intelligence approaches to predict the rheological properties of fresh concrete

流变学 材料科学 均方误差 决定系数 决策树 统计 结构工程
作者
Sohaib Nazar,Jian Yang,Ayaz Ahmad,Syed Farasat Ali Shah
出处
期刊:Materials today communications [Elsevier]
卷期号:32: 103964-103964
标识
DOI:10.1016/j.mtcomm.2022.103964
摘要

Rheology has been an essential tool to control the fresh state properties of concrete in case of self-compacting concrete, 3d printing of concrete, and ultra-high-performance concrete. Through proper control of rheology, it is possible to achieve desire green strength concrete and free from honeycombing, bleeding, and segregation for self-compacting concrete. The rheological properties of concrete were investigated in the study with the application of machine learning methods. The decision tree (DT) and bagging regressor (BR) were employed to predict the plastic viscosity (PV) and yield stress (YS) of the concrete with various mixes. Total 140 data points (mixes) for concrete were used to the run the selected models to obtain the forecasted result for both PV and YS. Six input variables were used for running the models for two outcomes (PV and YS). Results revealed that the BR was more effective in term of predicting both properties PV and YS of concrete by indicating the coefficient of determination values 0.90 and 0.95, respectively. However, the said results for PV (0.90) and YS (0.93) from DT model was also satisfactory. The lesser values of the errors, root mean square error, mean square error, mean absolute error and the indication of high performance of the BR towards the prediction. The sensitivity analysis reflected the importance of each parameter with water and gravels having more than 50 % impact on PV output values, while for YS, both medium and small size gravels were found having impact more than 65 %. The statistical checks and method of k-fold cross over validation also confirms the accuracy of models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助10
1秒前
瞿寒发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
znchick发布了新的文献求助10
2秒前
2秒前
小蓝完成签到,获得积分10
3秒前
Artorias应助水梦语采纳,获得10
4秒前
DDDDDDDHS完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
木子应助tongtongzi采纳,获得10
7秒前
7秒前
FashionBoy应助blink_gmx采纳,获得10
7秒前
8秒前
隐形曼青应助加瓦采纳,获得10
8秒前
科研通AI6应助细腻的谷丝采纳,获得10
8秒前
万能图书馆应助luoyi采纳,获得10
9秒前
lvzhihao发布了新的文献求助10
9秒前
mmmxxxjjj发布了新的文献求助10
10秒前
CipherSage应助galaxy采纳,获得30
11秒前
WuZY发布了新的文献求助10
11秒前
11秒前
Mxue完成签到,获得积分10
11秒前
znchick完成签到,获得积分10
12秒前
12秒前
香蕉觅云应助研友_ndvmV8采纳,获得10
12秒前
12秒前
沉默的延恶完成签到,获得积分10
13秒前
虚幻的素完成签到 ,获得积分10
13秒前
后海驳回了李健应助
13秒前
爹爹发布了新的文献求助10
14秒前
JamesPei应助123采纳,获得10
16秒前
xiaoxiao发布了新的文献求助10
17秒前
所所应助平常映雁采纳,获得10
17秒前
17秒前
18秒前
19秒前
20秒前
21秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453630
求助须知:如何正确求助?哪些是违规求助? 4561192
关于积分的说明 14281077
捐赠科研通 4485153
什么是DOI,文献DOI怎么找? 2456502
邀请新用户注册赠送积分活动 1447252
关于科研通互助平台的介绍 1422669