Comparative study of evolutionary artificial intelligence approaches to predict the rheological properties of fresh concrete

流变学 材料科学 均方误差 决定系数 决策树 统计 结构工程
作者
Sohaib Nazar,Jian Yang,Ayaz Ahmad,Syed Farasat Ali Shah
出处
期刊:Materials today communications [Elsevier]
卷期号:32: 103964-103964
标识
DOI:10.1016/j.mtcomm.2022.103964
摘要

Rheology has been an essential tool to control the fresh state properties of concrete in case of self-compacting concrete, 3d printing of concrete, and ultra-high-performance concrete. Through proper control of rheology, it is possible to achieve desire green strength concrete and free from honeycombing, bleeding, and segregation for self-compacting concrete. The rheological properties of concrete were investigated in the study with the application of machine learning methods. The decision tree (DT) and bagging regressor (BR) were employed to predict the plastic viscosity (PV) and yield stress (YS) of the concrete with various mixes. Total 140 data points (mixes) for concrete were used to the run the selected models to obtain the forecasted result for both PV and YS. Six input variables were used for running the models for two outcomes (PV and YS). Results revealed that the BR was more effective in term of predicting both properties PV and YS of concrete by indicating the coefficient of determination values 0.90 and 0.95, respectively. However, the said results for PV (0.90) and YS (0.93) from DT model was also satisfactory. The lesser values of the errors, root mean square error, mean square error, mean absolute error and the indication of high performance of the BR towards the prediction. The sensitivity analysis reflected the importance of each parameter with water and gravels having more than 50 % impact on PV output values, while for YS, both medium and small size gravels were found having impact more than 65 %. The statistical checks and method of k-fold cross over validation also confirms the accuracy of models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
3秒前
3秒前
研究菜鸟完成签到,获得积分10
3秒前
3秒前
4秒前
hcx发布了新的文献求助10
4秒前
5秒前
SunXinwei发布了新的文献求助10
5秒前
噻吩发布了新的文献求助10
5秒前
韦恩发布了新的文献求助10
5秒前
飘飘发布了新的文献求助10
6秒前
6秒前
tjcu发布了新的文献求助10
8秒前
大模型应助马超放烟花采纳,获得10
8秒前
9秒前
村上种树发布了新的文献求助10
9秒前
Ava应助LZH采纳,获得10
10秒前
10秒前
bmhs2017应助mhlu7采纳,获得10
11秒前
13秒前
研友_VZG7GZ应助mia采纳,获得10
14秒前
思源应助hcx采纳,获得10
15秒前
halo完成签到 ,获得积分10
15秒前
15秒前
大模型应助SunXinwei采纳,获得10
16秒前
浮游应助活泼山雁采纳,获得10
16秒前
一点通发布了新的文献求助10
16秒前
17秒前
SNE完成签到,获得积分10
18秒前
18秒前
怕黑的友安关注了科研通微信公众号
20秒前
20秒前
科研通AI6应助一点通采纳,获得10
20秒前
飘飘完成签到,获得积分10
20秒前
Waris发布了新的文献求助10
22秒前
香蕉觅云应助沉默飞松采纳,获得10
23秒前
小青椒应助藏识采纳,获得200
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5416954
求助须知:如何正确求助?哪些是违规求助? 4533002
关于积分的说明 14137871
捐赠科研通 4449072
什么是DOI,文献DOI怎么找? 2440575
邀请新用户注册赠送积分活动 1432430
关于科研通互助平台的介绍 1409858