计算机科学
图形
数据挖掘
机器学习
人工智能
理论计算机科学
作者
Xingtong Ge,Yi Yang,Ling Peng,Luanjie Chen,Weichao Li,Wenyue Zhang,Jiahui Chen
出处
期刊:Remote Sensing
[Multidisciplinary Digital Publishing Institute]
日期:2022-07-21
卷期号:14 (14): 3496-3496
被引量:30
摘要
Forest fires have frequently occurred and caused great harm to people’s lives. Many researchers use machine learning techniques to predict forest fires by considering spatio-temporal data features. However, it is difficult to efficiently obtain the features from large-scale, multi-source, heterogeneous data. There is a lack of a method that can effectively extract features required by machine learning-based forest fire predictions from multi-source spatio-temporal data. This paper proposes a forest fire prediction method that integrates spatio-temporal knowledge graphs and machine learning models. This method can fuse multi-source heterogeneous spatio-temporal forest fire data by constructing a forest fire semantic ontology and a knowledge graph-based spatio-temporal framework. This paper defines the domain expertise of forest fire analysis as the semantic rules of the knowledge graph. This paper proposes a rule-based reasoning method to obtain the corresponding data for the specific machine learning-based forest fire prediction methods, which are dedicated to tackling the problem with real-time prediction scenarios. This paper performs experiments regarding forest fire predictions based on real-world data in the experimental areas Xichang and Yanyuan in Sichuan province. The results show that the proposed method is beneficial for the fusion of multi-source spatio-temporal data and highly improves the prediction performance in real forest fire prediction scenarios.
科研通智能强力驱动
Strongly Powered by AbleSci AI