Spatio-Temporal Knowledge Graph Based Forest Fire Prediction with Multi Source Heterogeneous Data

计算机科学 图形 数据挖掘 机器学习 人工智能 理论计算机科学
作者
Xingtong Ge,Yi Yang,Ling Peng,Luanjie Chen,Weichao Li,Wenyue Zhang,Jiahui Chen
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:14 (14): 3496-3496 被引量:30
标识
DOI:10.3390/rs14143496
摘要

Forest fires have frequently occurred and caused great harm to people’s lives. Many researchers use machine learning techniques to predict forest fires by considering spatio-temporal data features. However, it is difficult to efficiently obtain the features from large-scale, multi-source, heterogeneous data. There is a lack of a method that can effectively extract features required by machine learning-based forest fire predictions from multi-source spatio-temporal data. This paper proposes a forest fire prediction method that integrates spatio-temporal knowledge graphs and machine learning models. This method can fuse multi-source heterogeneous spatio-temporal forest fire data by constructing a forest fire semantic ontology and a knowledge graph-based spatio-temporal framework. This paper defines the domain expertise of forest fire analysis as the semantic rules of the knowledge graph. This paper proposes a rule-based reasoning method to obtain the corresponding data for the specific machine learning-based forest fire prediction methods, which are dedicated to tackling the problem with real-time prediction scenarios. This paper performs experiments regarding forest fire predictions based on real-world data in the experimental areas Xichang and Yanyuan in Sichuan province. The results show that the proposed method is beneficial for the fusion of multi-source spatio-temporal data and highly improves the prediction performance in real forest fire prediction scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
泥鳅面完成签到,获得积分10
刚刚
大模型应助cencen采纳,获得10
1秒前
窝瓜发布了新的文献求助10
1秒前
kkkiku发布了新的文献求助30
2秒前
2秒前
香蕉觅云应助悦子采纳,获得20
2秒前
Market123580完成签到 ,获得积分10
2秒前
Hhhhh发布了新的文献求助30
2秒前
Chenjunxian发布了新的文献求助10
2秒前
雨宿完成签到,获得积分10
3秒前
susu发布了新的文献求助10
3秒前
zz完成签到 ,获得积分10
4秒前
zyc发布了新的文献求助10
4秒前
4秒前
RBE小陈发布了新的文献求助10
4秒前
星辰大海应助minjeong采纳,获得10
5秒前
隐形曼青应助坚定笑蓝采纳,获得10
5秒前
flame完成签到 ,获得积分10
6秒前
6秒前
6秒前
炙热灰狼完成签到,获得积分10
6秒前
搜集达人应助Chenjunxian采纳,获得10
6秒前
Espoir发布了新的文献求助10
7秒前
7秒前
Owen应助阔达的太阳采纳,获得10
8秒前
刘不怂完成签到,获得积分10
8秒前
123完成签到,获得积分10
8秒前
xiaojiu发布了新的文献求助10
9秒前
9秒前
9秒前
浮游应助lxb采纳,获得10
10秒前
最佳赏味期完成签到,获得积分10
10秒前
科研通AI5应助野格三明治采纳,获得50
10秒前
anan发布了新的文献求助30
10秒前
10秒前
炙热灰狼发布了新的文献求助10
10秒前
JamesPei应助怕孤单的平卉采纳,获得10
11秒前
阿李发布了新的文献求助10
11秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5205682
求助须知:如何正确求助?哪些是违规求助? 4384419
关于积分的说明 13652819
捐赠科研通 4242511
什么是DOI,文献DOI怎么找? 2327518
邀请新用户注册赠送积分活动 1325287
关于科研通互助平台的介绍 1277428