Spatio-Temporal Knowledge Graph Based Forest Fire Prediction with Multi Source Heterogeneous Data

计算机科学 图形 数据挖掘 机器学习 人工智能 理论计算机科学
作者
Xingtong Ge,Yi Yang,Ling Peng,Luanjie Chen,Weichao Li,Wenyue Zhang,Jiahui Chen
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:14 (14): 3496-3496 被引量:30
标识
DOI:10.3390/rs14143496
摘要

Forest fires have frequently occurred and caused great harm to people’s lives. Many researchers use machine learning techniques to predict forest fires by considering spatio-temporal data features. However, it is difficult to efficiently obtain the features from large-scale, multi-source, heterogeneous data. There is a lack of a method that can effectively extract features required by machine learning-based forest fire predictions from multi-source spatio-temporal data. This paper proposes a forest fire prediction method that integrates spatio-temporal knowledge graphs and machine learning models. This method can fuse multi-source heterogeneous spatio-temporal forest fire data by constructing a forest fire semantic ontology and a knowledge graph-based spatio-temporal framework. This paper defines the domain expertise of forest fire analysis as the semantic rules of the knowledge graph. This paper proposes a rule-based reasoning method to obtain the corresponding data for the specific machine learning-based forest fire prediction methods, which are dedicated to tackling the problem with real-time prediction scenarios. This paper performs experiments regarding forest fire predictions based on real-world data in the experimental areas Xichang and Yanyuan in Sichuan province. The results show that the proposed method is beneficial for the fusion of multi-source spatio-temporal data and highly improves the prediction performance in real forest fire prediction scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西奥完成签到 ,获得积分10
2秒前
酷酷的杨发布了新的文献求助10
2秒前
雨林霖完成签到,获得积分10
2秒前
暗栀完成签到 ,获得积分10
2秒前
3秒前
6秒前
ddd发布了新的文献求助10
6秒前
SYLH应助崽崽采纳,获得10
7秒前
情怀应助VitoLi采纳,获得10
7秒前
7秒前
刚子发布了新的文献求助10
7秒前
赘婿应助嗯对采纳,获得10
8秒前
英姑应助南敏株采纳,获得10
8秒前
小厮完成签到,获得积分10
9秒前
传奇3应助科研小菜狗采纳,获得10
9秒前
11秒前
Chocolate发布了新的文献求助10
11秒前
Syrup完成签到,获得积分10
11秒前
谈笑间发布了新的文献求助10
12秒前
无心的白桃完成签到 ,获得积分10
12秒前
O泡果奶完成签到,获得积分10
12秒前
人间烟火完成签到,获得积分10
12秒前
misu完成签到,获得积分10
13秒前
王359发布了新的文献求助30
16秒前
杜仲文完成签到,获得积分10
17秒前
18秒前
何照人应助科研通管家采纳,获得20
18秒前
星辰大海应助科研通管家采纳,获得10
18秒前
英姑应助科研通管家采纳,获得10
18秒前
何照人应助科研通管家采纳,获得10
18秒前
科目三应助科研通管家采纳,获得10
18秒前
zhang发布了新的文献求助30
18秒前
CipherSage应助科研通管家采纳,获得10
18秒前
酷波er应助科研通管家采纳,获得10
18秒前
SciGPT应助科研通管家采纳,获得10
19秒前
烟花应助科研通管家采纳,获得10
19秒前
脑洞疼应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
桐桐应助WaEi采纳,获得10
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967409
求助须知:如何正确求助?哪些是违规求助? 3512686
关于积分的说明 11164710
捐赠科研通 3247680
什么是DOI,文献DOI怎么找? 1793964
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804498