Machine learning for distinguishing right from left premature ventricular contraction origin using surface electrocardiogram features

医学 随机森林 队列 心室流出道 心脏病学 内科学 前瞻性队列研究 接收机工作特性 烧蚀 体表面积 射频消融术 心电图 算法 机器学习 计算机科学
作者
Wei Zhao,Rui Zhu,Jian Zhang,Yangming Mao,Hongwu Chen,Weizhu Ju,Mingfang Li,Gang Yang,Kai Gu,Zidun Wang,Hailei Liu,Jiaojiao Shi,Xiaohong Jiang,Pipin Kojodjojo,Minglong Chen,Fengxiang Zhang
出处
期刊:Heart Rhythm [Elsevier BV]
卷期号:19 (11): 1781-1789 被引量:16
标识
DOI:10.1016/j.hrthm.2022.07.010
摘要

Precise localization of the site of origin of premature ventricular contractions (PVCs) before ablation can facilitate the planning and execution of the electrophysiological procedure.The purpose of this study was to develop a predictive model that can be used to differentiate PVCs between the left ventricular outflow tract and right ventricular outflow tract (RVOT) using surface electrocardiogram characteristics.A total of 851 patients undergoing radiofrequency ablation of premature ventricular beats from January 2015 to March 2022 were enrolled. Ninety-two patients were excluded. The other 759 patients were enrolled into the development (n = 605), external validation (n = 104), or prospective cohort (n = 50). The development cohort consisted of the training group (n = 423) and the internal validation group (n = 182). Machine learning algorithms were used to construct predictive models for the origin of PVCs using body surface electrocardiogram features.In the development cohort, the Random Forest model showed a maximum receiver operating characteristic curve area of 0.96. In the external validation cohort, the Random Forest model surpasses 4 reported algorithms in predicting performance (accuracy 94.23%; sensitivity 97.10%; specificity 88.57%). In the prospective cohort, the Random Forest model showed good performance (accuracy 94.00%; sensitivity 85.71%; specificity 97.22%).Random Forest algorithm has improved the accuracy of distinguishing the origin of PVCs, which surpasses 4 previous standards, and would be used to identify the origin of PVCs before the interventional procedure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Allen发布了新的文献求助10
刚刚
1秒前
阿屁屁猪发布了新的文献求助10
1秒前
pura卷卷发布了新的文献求助10
2秒前
领导范儿应助聪慧雪糕采纳,获得10
2秒前
Lucas应助执着的弱采纳,获得10
2秒前
2秒前
3秒前
SciGPT应助baishiyan采纳,获得10
4秒前
123发布了新的文献求助10
5秒前
GGKing完成签到 ,获得积分10
5秒前
5秒前
zhu发布了新的文献求助10
5秒前
肖0625完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
8秒前
千殇发布了新的文献求助10
8秒前
8秒前
Sean发布了新的文献求助10
9秒前
SciGPT应助阿屁屁猪采纳,获得10
9秒前
戒骄戒躁发布了新的文献求助10
10秒前
11秒前
叶航发布了新的文献求助10
11秒前
11秒前
聪慧雪糕发布了新的文献求助10
12秒前
871004188完成签到,获得积分10
12秒前
小马甲应助小墩墩采纳,获得10
13秒前
三金发布了新的文献求助10
13秒前
13秒前
14秒前
千殇完成签到,获得积分10
15秒前
15秒前
15秒前
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
打打应助科研通管家采纳,获得10
16秒前
16秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5344166
求助须知:如何正确求助?哪些是违规求助? 4479497
关于积分的说明 13943155
捐赠科研通 4376560
什么是DOI,文献DOI怎么找? 2404847
邀请新用户注册赠送积分活动 1397207
关于科研通互助平台的介绍 1369579