Machine learning for distinguishing right from left premature ventricular contraction origin using surface electrocardiogram features

医学 随机森林 队列 心室流出道 心脏病学 内科学 前瞻性队列研究 接收机工作特性 烧蚀 体表面积 射频消融术 心电图 算法 机器学习 计算机科学
作者
Wei Zhao,Rui Zhu,Jian Zhang,Yangming Mao,Hongwu Chen,Weizhu Ju,Mingfang Li,Gang Yang,Kai Gu,Zidun Wang,Hailei Liu,Jiaojiao Shi,Xiaohong Jiang,Pipin Kojodjojo,Minglong Chen,Fengxiang Zhang
出处
期刊:Heart Rhythm [Elsevier BV]
卷期号:19 (11): 1781-1789 被引量:16
标识
DOI:10.1016/j.hrthm.2022.07.010
摘要

Precise localization of the site of origin of premature ventricular contractions (PVCs) before ablation can facilitate the planning and execution of the electrophysiological procedure.The purpose of this study was to develop a predictive model that can be used to differentiate PVCs between the left ventricular outflow tract and right ventricular outflow tract (RVOT) using surface electrocardiogram characteristics.A total of 851 patients undergoing radiofrequency ablation of premature ventricular beats from January 2015 to March 2022 were enrolled. Ninety-two patients were excluded. The other 759 patients were enrolled into the development (n = 605), external validation (n = 104), or prospective cohort (n = 50). The development cohort consisted of the training group (n = 423) and the internal validation group (n = 182). Machine learning algorithms were used to construct predictive models for the origin of PVCs using body surface electrocardiogram features.In the development cohort, the Random Forest model showed a maximum receiver operating characteristic curve area of 0.96. In the external validation cohort, the Random Forest model surpasses 4 reported algorithms in predicting performance (accuracy 94.23%; sensitivity 97.10%; specificity 88.57%). In the prospective cohort, the Random Forest model showed good performance (accuracy 94.00%; sensitivity 85.71%; specificity 97.22%).Random Forest algorithm has improved the accuracy of distinguishing the origin of PVCs, which surpasses 4 previous standards, and would be used to identify the origin of PVCs before the interventional procedure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助伯赏聪展采纳,获得10
2秒前
打打应助zzzshy采纳,获得10
2秒前
天天快乐应助无足鸟采纳,获得10
2秒前
山与发布了新的文献求助10
4秒前
4秒前
song发布了新的文献求助30
7秒前
共享精神应助张同学采纳,获得10
10秒前
受伤小虾米完成签到,获得积分10
10秒前
所所应助祥辉NCU采纳,获得10
10秒前
11秒前
ar完成签到,获得积分10
12秒前
周易完成签到,获得积分10
12秒前
13秒前
14秒前
核桃酥完成签到,获得积分10
14秒前
研友_VZG7GZ应助美女采纳,获得10
15秒前
16秒前
周易发布了新的文献求助10
18秒前
18秒前
18秒前
wshwx发布了新的文献求助30
21秒前
21秒前
ADJ发布了新的文献求助10
22秒前
自由竺完成签到,获得积分20
24秒前
24秒前
侯康应助楼马采纳,获得10
27秒前
张同学发布了新的文献求助10
28秒前
28秒前
30秒前
miemie完成签到,获得积分10
31秒前
浮游应助材1采纳,获得50
31秒前
31秒前
KKIII发布了新的文献求助30
31秒前
奈克罗普陀西斯完成签到,获得积分10
34秒前
313发布了新的文献求助10
35秒前
35秒前
飘逸灰狼完成签到 ,获得积分10
35秒前
无花果应助捞鱼采纳,获得10
35秒前
36秒前
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288354
求助须知:如何正确求助?哪些是违规求助? 4440235
关于积分的说明 13824120
捐赠科研通 4322496
什么是DOI,文献DOI怎么找? 2372594
邀请新用户注册赠送积分活动 1368040
关于科研通互助平台的介绍 1331818