Machine learning for distinguishing right from left premature ventricular contraction origin using surface electrocardiogram features

医学 随机森林 队列 心室流出道 心脏病学 内科学 前瞻性队列研究 接收机工作特性 烧蚀 体表面积 射频消融术 心电图 算法 机器学习 计算机科学
作者
Wei Zhao,Rui Zhu,Jian Zhang,Yangming Mao,Hongwu Chen,Weizhu Ju,Mingfang Li,Gang Yang,Kai Gu,Zidun Wang,Hailei Liu,Jiaojiao Shi,Xiaohong Jiang,Pipin Kojodjojo,Minglong Chen,Fengxiang Zhang
出处
期刊:Heart Rhythm [Elsevier BV]
卷期号:19 (11): 1781-1789 被引量:13
标识
DOI:10.1016/j.hrthm.2022.07.010
摘要

Precise localization of the site of origin of premature ventricular contractions (PVCs) before ablation can facilitate the planning and execution of the electrophysiological procedure.The purpose of this study was to develop a predictive model that can be used to differentiate PVCs between the left ventricular outflow tract and right ventricular outflow tract (RVOT) using surface electrocardiogram characteristics.A total of 851 patients undergoing radiofrequency ablation of premature ventricular beats from January 2015 to March 2022 were enrolled. Ninety-two patients were excluded. The other 759 patients were enrolled into the development (n = 605), external validation (n = 104), or prospective cohort (n = 50). The development cohort consisted of the training group (n = 423) and the internal validation group (n = 182). Machine learning algorithms were used to construct predictive models for the origin of PVCs using body surface electrocardiogram features.In the development cohort, the Random Forest model showed a maximum receiver operating characteristic curve area of 0.96. In the external validation cohort, the Random Forest model surpasses 4 reported algorithms in predicting performance (accuracy 94.23%; sensitivity 97.10%; specificity 88.57%). In the prospective cohort, the Random Forest model showed good performance (accuracy 94.00%; sensitivity 85.71%; specificity 97.22%).Random Forest algorithm has improved the accuracy of distinguishing the origin of PVCs, which surpasses 4 previous standards, and would be used to identify the origin of PVCs before the interventional procedure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赎罪完成签到 ,获得积分10
刚刚
授业解惑的哑铃完成签到,获得积分10
刚刚
1秒前
2秒前
igi发布了新的文献求助10
2秒前
高兴123发布了新的文献求助30
2秒前
打打应助bai采纳,获得10
3秒前
tty发布了新的文献求助10
3秒前
踏实十八发布了新的文献求助30
3秒前
Ellen完成签到 ,获得积分10
4秒前
Tao发布了新的文献求助10
4秒前
苏苏完成签到,获得积分10
4秒前
接点私活发布了新的文献求助10
5秒前
5秒前
金虎完成签到,获得积分10
5秒前
最佳损友完成签到,获得积分10
5秒前
916应助奋斗的剑采纳,获得10
5秒前
emilybei完成签到,获得积分10
5秒前
沫沫完成签到 ,获得积分10
5秒前
涂山璟发布了新的文献求助10
6秒前
谦让的秀发布了新的文献求助10
6秒前
ABU完成签到,获得积分10
6秒前
唐响完成签到,获得积分10
6秒前
totoro完成签到,获得积分10
6秒前
7秒前
xzg111发布了新的文献求助10
7秒前
科研小王完成签到,获得积分10
7秒前
Lucas应助sdl采纳,获得10
8秒前
英姑应助金虎采纳,获得10
8秒前
徐逸发布了新的文献求助10
9秒前
青阳完成签到,获得积分10
9秒前
大模型应助Mine采纳,获得10
9秒前
万幸鹿完成签到,获得积分10
9秒前
清秀的仙人掌完成签到,获得积分10
9秒前
思源应助yy采纳,获得10
9秒前
小人物完成签到,获得积分10
10秒前
anti1988完成签到,获得积分10
10秒前
就是不签名完成签到,获得积分10
10秒前
冷艳的孤晴完成签到,获得积分10
10秒前
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950365
求助须知:如何正确求助?哪些是违规求助? 3495846
关于积分的说明 11078987
捐赠科研通 3226245
什么是DOI,文献DOI怎么找? 1783653
邀请新用户注册赠送积分活动 867728
科研通“疑难数据库(出版商)”最低求助积分说明 800926