Machine learning for distinguishing right from left premature ventricular contraction origin using surface electrocardiogram features

医学 随机森林 队列 心室流出道 心脏病学 内科学 前瞻性队列研究 接收机工作特性 烧蚀 体表面积 射频消融术 心电图 算法 机器学习 计算机科学
作者
Wei Zhao,Rui Zhu,Jian Zhang,Yangming Mao,Hongwu Chen,Weizhu Ju,Mingfang Li,Gang Yang,Kai Gu,Zidun Wang,Hailei Liu,Jiaojiao Shi,Xiaohong Jiang,Pipin Kojodjojo,Minglong Chen,Fengxiang Zhang
出处
期刊:Heart Rhythm [Elsevier BV]
卷期号:19 (11): 1781-1789 被引量:16
标识
DOI:10.1016/j.hrthm.2022.07.010
摘要

Precise localization of the site of origin of premature ventricular contractions (PVCs) before ablation can facilitate the planning and execution of the electrophysiological procedure.The purpose of this study was to develop a predictive model that can be used to differentiate PVCs between the left ventricular outflow tract and right ventricular outflow tract (RVOT) using surface electrocardiogram characteristics.A total of 851 patients undergoing radiofrequency ablation of premature ventricular beats from January 2015 to March 2022 were enrolled. Ninety-two patients were excluded. The other 759 patients were enrolled into the development (n = 605), external validation (n = 104), or prospective cohort (n = 50). The development cohort consisted of the training group (n = 423) and the internal validation group (n = 182). Machine learning algorithms were used to construct predictive models for the origin of PVCs using body surface electrocardiogram features.In the development cohort, the Random Forest model showed a maximum receiver operating characteristic curve area of 0.96. In the external validation cohort, the Random Forest model surpasses 4 reported algorithms in predicting performance (accuracy 94.23%; sensitivity 97.10%; specificity 88.57%). In the prospective cohort, the Random Forest model showed good performance (accuracy 94.00%; sensitivity 85.71%; specificity 97.22%).Random Forest algorithm has improved the accuracy of distinguishing the origin of PVCs, which surpasses 4 previous standards, and would be used to identify the origin of PVCs before the interventional procedure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风清扬发布了新的文献求助10
刚刚
石头完成签到,获得积分10
刚刚
1秒前
哦啦啦完成签到,获得积分10
2秒前
YDX发布了新的文献求助10
2秒前
浮游应助111采纳,获得10
3秒前
xiaozeng完成签到,获得积分10
3秒前
小二郎应助Daisy采纳,获得10
3秒前
sam完成签到,获得积分10
3秒前
小马甲应助ver采纳,获得10
3秒前
感动城完成签到,获得积分10
4秒前
怕黑的寻菱完成签到,获得积分10
4秒前
xy发布了新的文献求助10
5秒前
5秒前
Ava应助LL采纳,获得10
6秒前
jacobian给jacobian的求助进行了留言
8秒前
9秒前
9秒前
烟花应助夏目有熙采纳,获得30
10秒前
仁爱的平凡完成签到,获得积分20
10秒前
10秒前
10秒前
10秒前
林中雀完成签到 ,获得积分10
10秒前
zheng发布了新的文献求助10
13秒前
Sarah发布了新的文献求助10
13秒前
14秒前
toda完成签到,获得积分10
15秒前
贪玩的秋柔完成签到,获得积分10
15秒前
15秒前
15秒前
事事件件发布了新的文献求助10
16秒前
清沧炽魂发布了新的文献求助10
16秒前
yu完成签到 ,获得积分10
17秒前
在水一方应助XINYI采纳,获得10
17秒前
wzt完成签到,获得积分10
17秒前
LXL0125发布了新的文献求助10
19秒前
1107任务报告完成签到,获得积分10
19秒前
残酷的风完成签到,获得积分10
20秒前
灿子发布了新的文献求助10
20秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
The Emotional Life of Organisations 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5213989
求助须知:如何正确求助?哪些是违规求助? 4389639
关于积分的说明 13667469
捐赠科研通 4250894
什么是DOI,文献DOI怎么找? 2332289
邀请新用户注册赠送积分活动 1329887
关于科研通互助平台的介绍 1283580