ReGO: Reference-Guided Outpainting for Scenery Image

计算机科学 人工智能 一致性(知识库) 素描 像素 图像(数学) 排名(信息检索) 计算机视觉 计算机图形学(图像) 算法
作者
Yaxiong Wang,Yunchao Wei,Yunchao Wei,Zhu Li,Yi Yang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 1375-1388
标识
DOI:10.1109/tip.2024.3357290
摘要

We present ReGO (Reference-Guided Outpainting), a new method for the task of sketch-guided image outpainting. Despite the significant progress made in producing semantically coherent content, existing outpainting methods often fail to deliver visually appealing results due to blurry textures and generative artifacts. To address these issues, ReGO leverages neighboring reference images to synthesize texture-rich results by transferring pixels from them. Specifically, an Adaptive Content Selection (ACS) module is incorporated into ReGO to facilitate pixel transfer for texture compensating of the target image. Additionally, a style ranking loss is introduced to maintain consistency in terms of style while preventing the generated part from being influenced by the reference images. ReGO is a model-agnostic learning paradigm for outpainting tasks. In our experiments, we integrate ReGO with three state-of-the-art outpainting models to evaluate its effectiveness. The results obtained on three scenery benchmarks, i.e. NS6K, NS8K and SUN Attribute, demonstrate the superior performance of ReGO compared to prior art in terms of texture richness and authenticity. Our code is available at https://github.com/wangyxxjtu/ReGO-Pytorch.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
taotao发布了新的文献求助10
刚刚
1秒前
1秒前
笙忘发布了新的文献求助10
2秒前
丘比特应助万松采纳,获得10
3秒前
4秒前
共享精神应助cizzz采纳,获得10
4秒前
fjmelite发布了新的文献求助10
4秒前
完美世界应助科研通管家采纳,获得10
5秒前
5秒前
浮游应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
Jessica完成签到,获得积分0
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
5秒前
Hello应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
小神仙完成签到 ,获得积分10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
hyh发布了新的文献求助30
6秒前
6秒前
浮游应助科研通管家采纳,获得10
6秒前
6秒前
今后应助威武弼采纳,获得10
7秒前
杰果完成签到,获得积分10
8秒前
希望天下0贩的0应助十七采纳,获得10
8秒前
LLL发布了新的文献求助10
8秒前
江睿曦发布了新的文献求助10
10秒前
10秒前
hyh完成签到,获得积分10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458434
求助须知:如何正确求助?哪些是违规求助? 4564465
关于积分的说明 14295221
捐赠科研通 4489353
什么是DOI,文献DOI怎么找? 2459047
邀请新用户注册赠送积分活动 1448864
关于科研通互助平台的介绍 1424466