Predicting Long-term Survival and Time-to-recurrence After Esophagectomy in Patients With Esophageal Cancer

医学 食管切除术 食管癌 置信区间 比例危险模型 生存分析 内科学 外科 癌症
作者
Rohan R Gujjuri,Jonathan Clarke,Jessie A. Elliott,Saqib Rahman,John V. Reynolds,George B. Hanna,Sheraz R. Markar
出处
期刊:Annals of Surgery [Ovid Technologies (Wolters Kluwer)]
卷期号:277 (6): 971-978 被引量:1
标识
DOI:10.1097/sla.0000000000005538
摘要

Objective: To develop prediction models to predict long-term survival and time-to-recurrence following surgery for esophageal cancer. Background: Long-term survival after esophagectomy remains poor, with recurrence common. Prediction tools can identify high-risk patients and optimize treatment decisions based on their prognostic factors. Methods: Patients undergoing curative surgery from the European iNvestigation of SUrveillance After Resection for Esophageal Cancer study were included. Prediction models were developed for overall survival (OS) and disease-free survival (DFS) using Cox proportional hazards (CPH) and random survival forest (RSF). Model performance was evaluated using discrimination [time-dependent area under the curve (tAUC)] and calibration (visual comparison of predicted and observed survival probabilities). Results: This study included 4719 patients with an OS of 47.7% and DFS of 40.9% at 5 years. Sixteen variables were included. CPH and RSF demonstrated good discrimination with a tAUC of 78.2% [95% confidence interval (CI): 77.4%–79.1%] and 77.1% (95% CI: 76.1%–78.1%) for OS and a tAUC of 79.4% (95% CI: 78.5%–80.2%) and 78.6% (95% CI: 77.5%–79.5%), respectively for DFS at 5 years. CPH showed good agreement between predicted and observed probabilities in all quintiles. RSF showed good agreement for patients with survival probabilities between 20% and 80%. Conclusions: This study demonstrated that a statistical model can accurately predict long-term survival and time-to-recurrence after esophagectomy. Identification of patient groups at risk of recurrence and poor long-term survival can improve patient outcomes by optimizing treatment methods and surveillance strategies. Future work evaluating prediction-based decisions against standard decision-making is required to understand the clinical utility derived from prognostic model use.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
aslink完成签到,获得积分10
1秒前
Amon完成签到,获得积分10
1秒前
啊娴仔发布了新的文献求助10
1秒前
camellia发布了新的文献求助10
1秒前
万能图书馆应助狂野觅云采纳,获得10
1秒前
充电宝应助zino采纳,获得10
2秒前
2秒前
小可发布了新的文献求助10
2秒前
英姑应助酷酷的起眸采纳,获得10
3秒前
Blue_Pig发布了新的文献求助10
3秒前
科研小白完成签到,获得积分10
4秒前
sooya发布了新的文献求助20
5秒前
5秒前
tiddler完成签到,获得积分10
5秒前
科研通AI2S应助滴滴采纳,获得10
5秒前
wgx完成签到,获得积分20
5秒前
6秒前
爱静静应助Keep采纳,获得10
6秒前
6秒前
6秒前
小马甲应助韭菜采纳,获得10
7秒前
MADKAI发布了新的文献求助10
7秒前
机智的白猫完成签到,获得积分10
7秒前
李健的小迷弟应助xxx采纳,获得10
7秒前
杜杜完成签到,获得积分10
7秒前
NexusExplorer应助新的心跳采纳,获得10
8秒前
9秒前
9秒前
9秒前
9秒前
9秒前
JamesPei应助小可采纳,获得10
9秒前
粗暴的醉卉完成签到,获得积分10
9秒前
9秒前
科研通AI5应助stt采纳,获得10
10秒前
sunzhiyu233发布了新的文献求助10
11秒前
11秒前
缓缓地安静关注了科研通微信公众号
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759