Multifeature Transformation and Fusion-Based Ship Detection With Small Targets and Complex Backgrounds

计算机科学 转化(遗传学) 人工智能 融合 计算机视觉 遥感 地质学 语言学 基因 化学 生物化学 哲学
作者
Mingfeng Zha,Wenbin Qian,Wenji Yang,Yilu Xu
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:19: 1-5 被引量:18
标识
DOI:10.1109/lgrs.2022.3192559
摘要

With the development of deep learning, synthetic aperture radar (SAR) image ship detection based on the convolutional neural network has made significant progress. However, there are two problems. 1) The false alarm detection rate is high due to complex background and coherent speckle noise interference. 2) For smaller ship targets, missed detection is prone to occur. In this letter, a novel ship detection model (MFTF-Net) based on multi-feature transformation and fusion is proposed to address the issues. First, to avoid the randomness of initial point selection and the influence of outlier points, the anchor frame clustering approach based on the K-medians++ algorithm is presented to cluster the object candidate frames. Second, the low-level feature information is passed to the high level by constructing a local enhancement network; then, an improved Transformer structure is introduced to replace the last convolutional block of the backbone network to obtain rich contextual information. Finally, a four-scale residual feature fusion network is designed, which fully fuses the object's detailed and semantic information. In addition, improved convolutional block attention module (CBAM) and squeeze and excitation (SE) attention mechanisms are applied in the lower two layers and upper two layers of the network output to reduce the interference of confusing information, respectively. The experimental results demonstrate that the proposed method is superior to the state-of-the-art thirteen baseline models on SAR ship detection dataset (SSDD), high-resolution SAR images dataset (HRSID), and SAR-ship-dataset public datasets in terms of the mAP, recall, accuracy, and F1 metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
schen发布了新的文献求助10
2秒前
3秒前
传奇3应助smida采纳,获得50
4秒前
阿秧发布了新的文献求助30
4秒前
4秒前
Goofee发布了新的文献求助10
6秒前
甜甜玫瑰应助研友_8Raw2Z采纳,获得10
7秒前
7秒前
Cecilia发布了新的文献求助10
7秒前
7秒前
陈陈发布了新的文献求助10
8秒前
全全完成签到,获得积分10
8秒前
10秒前
linney0325发布了新的文献求助10
10秒前
12秒前
晴天完成签到,获得积分10
12秒前
13秒前
577kkmm完成签到 ,获得积分10
14秒前
ding应助Milio采纳,获得10
14秒前
刘晓倩发布了新的文献求助10
15秒前
风中小夏应助ww采纳,获得10
15秒前
16秒前
master完成签到,获得积分10
17秒前
liupai00发布了新的文献求助10
18秒前
英俊的铭应助lx采纳,获得10
18秒前
宜醉宜游宜睡应助lx采纳,获得10
18秒前
思源应助lx采纳,获得10
18秒前
今后应助Cecilia采纳,获得10
19秒前
cqnuly发布了新的文献求助10
19秒前
22秒前
23秒前
小蘑菇应助刘晓倩采纳,获得30
24秒前
杨洋应助陈陈采纳,获得10
24秒前
buno应助11采纳,获得10
25秒前
liupai00完成签到,获得积分10
26秒前
难过小懒虫给难过小懒虫的求助进行了留言
27秒前
28秒前
hello完成签到 ,获得积分10
28秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330054
求助须知:如何正确求助?哪些是违规求助? 2959691
关于积分的说明 8596435
捐赠科研通 2638078
什么是DOI,文献DOI怎么找? 1444156
科研通“疑难数据库(出版商)”最低求助积分说明 668964
邀请新用户注册赠送积分活动 656559