Traffic-GGNN: Predicting Traffic Flow via Attentional Spatial-Temporal Gated Graph Neural Networks

计算机科学 图形 人工智能 骨料(复合) 深度学习 机器学习 数据挖掘 理论计算机科学 材料科学 复合材料
作者
Yang Wang,Jin Zheng,Yuqi Du,Cheng Huang,Ping Li
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (10): 18423-18432 被引量:48
标识
DOI:10.1109/tits.2022.3168590
摘要

Recent spatial-temporal graph-based deep learning methods for Traffic Flow Prediction (TFP) problems have shown superior performance in modeling higher-level spatial interactions and temporal correlations. However, most of these methods suffer from post-fusion efficiency difficulty caused by separate explorations of the spatial communications and the temporal dependencies, which could result in delayed and biased predictions. To address that, we propose a Traffic Gated Graph Neural Networks (Traffic-GGNN) for real-time-fused spatial-temporal representation modeling. Firstly, we adopt bidirectional message passing to capture the location-wise spatial interactions. Secondly, we apply a GRU-based module to explore and aggregate the spatial interactions with the temporal correlations in a real-time fusion way. Lastly, we introduce a self-attention mechanism to reweight the location-based importance and produce the final prediction. Moreover, our proposed model allows end-to-end training thus it is easy to scale to diverse types of traffic datasets and yield better efficiency and effectiveness on three real-world datasets (SZ-taxi, Los-loop, and PEMS-BAY).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风清扬发布了新的文献求助10
刚刚
四季安完成签到 ,获得积分10
2秒前
华杰发布了新的文献求助10
2秒前
丘比特应助shuangcheng采纳,获得10
3秒前
PhD_Essence完成签到,获得积分10
3秒前
开心完成签到 ,获得积分10
3秒前
3秒前
3秒前
3秒前
4秒前
LILI2完成签到 ,获得积分10
4秒前
橙熟完成签到,获得积分10
4秒前
毛球收藏家完成签到,获得积分10
5秒前
Li完成签到,获得积分10
5秒前
xiaoqianqian174完成签到,获得积分10
5秒前
线条完成签到 ,获得积分10
6秒前
6秒前
健忘捕完成签到 ,获得积分10
6秒前
蔡布布完成签到,获得积分10
6秒前
虞无剑发布了新的文献求助30
6秒前
123完成签到 ,获得积分10
6秒前
夏夏完成签到,获得积分10
6秒前
完美世界应助XF采纳,获得10
7秒前
是小浩啊完成签到,获得积分10
7秒前
风国之境完成签到,获得积分10
7秒前
Akim应助华杰采纳,获得10
7秒前
8秒前
8秒前
liurenmm发布了新的文献求助10
8秒前
Allen发布了新的文献求助10
8秒前
8秒前
9秒前
坚强桐完成签到,获得积分10
9秒前
隐形曼青应助王建采纳,获得10
9秒前
9秒前
马薄函完成签到,获得积分10
9秒前
顾矜应助玉玲子LIN采纳,获得30
9秒前
打打应助赵浩杰采纳,获得10
9秒前
10秒前
ll完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Theories in Second Language Acquisition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568540
求助须知:如何正确求助?哪些是违规求助? 4653148
关于积分的说明 14704472
捐赠科研通 4594943
什么是DOI,文献DOI怎么找? 2521424
邀请新用户注册赠送积分活动 1493006
关于科研通互助平台的介绍 1463793