Simple Multiscale UNet for Change Detection With Heterogeneous Remote Sensing Images

变更检测 计算机科学 卷积(计算机科学) 人工智能 图像(数学) 特征(语言学) 模式识别(心理学) 遥感 同种类的 特征提取 封面(代数) 计算机视觉 数学 地质学 工程类 哲学 组合数学 机械工程 人工神经网络 语言学
作者
Zhiyong Lv,Haitao Huang,Lipeng Gao,Jón Atli Benediktsson,Minghua Zhao,Cheng Shi
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:19: 1-5 被引量:53
标识
DOI:10.1109/lgrs.2022.3173300
摘要

Change detection with heterogeneous remote sensing images (HRSIs) is attractive for observing the Earth’s surface when homogeneous images are unavailable. However, HRSIs cannot be compared directly because the imaging mechanisms for bitemporal HRSIs are different, and detecting change with HRSIs is challenging. In this letter, a simple yet effective deep learning approach based on the classical UNet is proposed. First, a pair of image patches are concatenated together to learn a shared abstract feature in both image patch domains. Then, a multiscale convolution module is embedded in a UNet backbone to cover the various sizes and shapes of ground targets in an image scene. Finally, a combined loss function, which incorporates the focal and dice losses with an adjustable parameter, was incorporated to alleviate the effect of the imbalanced quantity of positive and negative samples in the training progress. By comparisons with five state-of-the-art methods in three pairs of real HRSIs, the experimental results achieved by our proposed approach have the best overall accuracy (OA), average accuracy (AA), recall (RC), and F-Score that are more than 95%, 79%, 60%, and 61%, respectively. The quantitative results and visual performance indicated the feasibility and superiority of the proposed approach for detecting land cover change with HRSIs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhang发布了新的文献求助10
1秒前
1秒前
努力科研的博士僧完成签到,获得积分10
1秒前
zhuzhen007发布了新的文献求助10
3秒前
甜栗栗子完成签到 ,获得积分10
4秒前
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
脑洞疼应助果实采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
yar应助科研通管家采纳,获得10
5秒前
5秒前
大个应助科研通管家采纳,获得10
6秒前
anitachiu1104发布了新的文献求助10
6秒前
打打应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
6秒前
7秒前
情怀应助不咸采纳,获得10
7秒前
缓慢海亦发布了新的文献求助10
8秒前
9秒前
能干的丸子完成签到,获得积分10
10秒前
宥啊发布了新的文献求助10
12秒前
my完成签到,获得积分10
12秒前
烟花应助吴军霄采纳,获得10
13秒前
卢莹发布了新的文献求助10
14秒前
15秒前
Wei完成签到,获得积分10
16秒前
聪慧芷巧发布了新的文献求助10
17秒前
xiaohong完成签到,获得积分10
18秒前
19秒前
宥啊完成签到,获得积分10
19秒前
20秒前
21秒前
香云完成签到 ,获得积分10
21秒前
33完成签到,获得积分10
21秒前
22秒前
23秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961083
求助须知:如何正确求助?哪些是违规求助? 3507362
关于积分的说明 11135622
捐赠科研通 3239835
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872400
科研通“疑难数据库(出版商)”最低求助积分说明 803150