已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Simple Multiscale UNet for Change Detection With Heterogeneous Remote Sensing Images

变更检测 计算机科学 简单(哲学) 人工智能 遥感 计算机视觉 地质学 认识论 哲学
作者
Zhiyong Lv,Haitao Huang,Lipeng Gao,Jón Atli Benediktsson,Minghua Zhao,Cheng Shi
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:19: 1-5 被引量:96
标识
DOI:10.1109/lgrs.2022.3173300
摘要

Change detection with heterogeneous remote sensing images (HRSIs) is attractive for observing the Earth's surface when homogeneous images are unavailable. However, HRSIs cannot be compared directly because the imaging mechanisms for bitemporal HRSIs are different, and detecting change with HRSIs is challenging. In this letter, a simple yet effective deep learning approach based on the classical UNet is proposed. First, a pair of image patches are concatenated together to learn a shared abstract feature in both image patch domains. Then, a multiscale convolution module is embedded in a UNet backbone to cover the various sizes and shapes of ground targets in an image scene. Finally, a combined loss function, which incorporates the focal and dice losses with an adjustable parameter, was incorporated to alleviate the effect of the imbalanced quantity of positive and negative samples in the training progress. By comparisons with five state-of-the-art methods in three pairs of real HRSIs, the experimental results achieved by our proposed approach have the best overall accuracy (OA), average accuracy (AA), recall (RC), and F-Score that are more than 95%, 79%, 60%, and 61%, respectively. The quantitative results and visual performance indicated the feasibility and superiority of the proposed approach for detecting land cover change with HRSIs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI5应助滕擎采纳,获得10
3秒前
郭耀锐完成签到,获得积分10
4秒前
4秒前
小油菜完成签到 ,获得积分10
4秒前
绿绿绿绿完成签到,获得积分10
5秒前
qiubai完成签到 ,获得积分10
5秒前
张小闲完成签到 ,获得积分10
6秒前
CodeCraft应助ardejiang采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
情怀应助科研通管家采纳,获得30
8秒前
ceeray23应助科研通管家采纳,获得10
8秒前
思源应助科研通管家采纳,获得30
8秒前
清茶一抹发布了新的文献求助10
8秒前
素笺发布了新的文献求助10
8秒前
13秒前
13秒前
桐桐应助结实碧空采纳,获得10
15秒前
15秒前
小蘑菇应助捏个小雪团采纳,获得10
17秒前
洋了个洋完成签到 ,获得积分10
17秒前
18秒前
happy完成签到 ,获得积分10
18秒前
cc发布了新的文献求助10
21秒前
Jasper应助科研菜鸟采纳,获得10
21秒前
Ruoru发布了新的文献求助10
21秒前
21秒前
滕擎发布了新的文献求助10
21秒前
Vency应助默默善愁采纳,获得50
21秒前
清爽老九发布了新的文献求助10
23秒前
23秒前
机灵紫萱发布了新的文献求助10
26秒前
Hello应助吉吉采纳,获得10
26秒前
RonK发布了新的文献求助10
26秒前
清茶一抹完成签到,获得积分10
26秒前
28秒前
stars完成签到 ,获得积分10
28秒前
29秒前
小蘑菇应助ljh采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5090007
求助须知:如何正确求助?哪些是违规求助? 4304665
关于积分的说明 13414601
捐赠科研通 4130315
什么是DOI,文献DOI怎么找? 2262199
邀请新用户注册赠送积分活动 1266136
关于科研通互助平台的介绍 1200822