流出
鲍曼不动杆菌
微生物学
化学
生物膜
银纳米粒子
生物化学
生物
细菌
纳米颗粒
纳米技术
遗传学
材料科学
铜绿假单胞菌
作者
Privita Verma,Monalisa Tiwari,Vishvanath Tiwari
标识
DOI:10.1016/j.ijbiomac.2022.07.065
摘要
Acinetobacter baumannii is an ESKAPE pathogen responsible for severe nosocomial infections. Among all the mechanisms contributing to multidrug resistance, efflux pumps have gained significant attention due to their widespread distribution among bacterial species and broad substrate specificity. This study has investigated the diverse roles of efflux pumps present in carbapenem-resistant A. baumannii (CRAB) and screen an efflux pump inhibitor. The result showed the presence of AdeABC, AdeFGH, AdeIJK, and AbeM efflux pumps in CRAB, and experimental studies using gene mutants demonstrated the significant role of AdeABC in carbapenem resistance, biofilm formation, surface motility, pathogenesis, bacterial adherence, and invasion to the host cells. The structure-based ligand screening, molecular mechanics, molecular dynamics simulation, and experimental validation using efflux pump mutants and antibiotic accumulation assay identified naringin dihydrochalcone (NDC) as the lead against AdeB. This lead was selected as a capping agent for silver nanoparticles. The NDC-capped silver nanoparticles (NDC-AgNPs) were characterized by UV-spectroscopy, Fourier-transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), and scanning electron microscopy (SEM). The investigated molecular mechanism showed that the NDC-AgNPs possessed multiple mechanisms of action. In addition to efflux inhibitory activity, it also generates reactive oxygen and nitrogen species as well as causes change in the electrochemical gradient in CRAB. The proton gradient is important for the function of AdeABC; hence altering the electrochemical gradient also disrupts its efflux activity. Moreover, A. baumannii did not develop any resistance against NDC-AgNPs till several generations which were investigated. The NDC-AgNPs were also found to be effective against carbapenem-resistant clinical isolates of A. baumannii. Therefore, the present study provided an insight into the efflux pump mediated carbapenem resistance and possible inhibitor NDC-AgNPs to combat AdeABC efflux pump mediated resistance.
科研通智能强力驱动
Strongly Powered by AbleSci AI