已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Detail-Enhanced Wavelet Residual Network for Single Image Super-Resolution

计算机科学 人工智能 小波 残余物 计算机视觉 加权 图像(数学) 迭代重建 图像分辨率 模式识别(心理学) 算法 声学 物理
作者
Wei‐Yen Hsu,Pei-Wen Jian
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-13 被引量:25
标识
DOI:10.1109/tim.2022.3192280
摘要

Single-image super-resolution (SR) is vital in all areas of computer vision, due to the capability of the technology to generate high-resolution (HR) images. Conventional SR approaches do not consider high-frequency detail information during the reconstruction, resulting in high-frequency details of the image unreal, distorted in the reconstructed SR image. In this study, a novel detail-enhanced wavelet residual network (DeWRNet) is proposed to individually deal with the low- and high-frequency of sub-images and resolve the problem of the details over smooth with a novel low-to-high frequency transmission (L2HFT) and detail enhancement (DE) mechanism. Unlike traditional SR approaches, which directly predict high-resolution images, the proposed DeWRNet decomposes the image into low- and high-frequency ones through stationary wavelet transform, and trains low- and high-frequency sub-images with different models. Furthermore, while reconstructing high-frequency details, low-frequency structure is also provided to further restore and enhance high-frequency details by the proposed L2HFT and DE mechanism. Finally, the joint-loss function is used to optimize low- and high-frequency results in different degree of weighting. In addition to correct restoration, image details are further enhanced by adjusting different hyperparameters during training. Compared with the state-of-the-art approaches, the experimental results indicate that the proposed DeWRNet achieves a better performance and has excellent visual presentation, especially in image edges and texture details.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无极微光应助星海采纳,获得20
刚刚
忽悠老羊发布了新的文献求助10
1秒前
Ye完成签到,获得积分10
2秒前
sqHALO发布了新的文献求助10
4秒前
科研通AI6.1应助王先生采纳,获得10
5秒前
Jasper应助缘__采纳,获得10
5秒前
积极乐天发布了新的文献求助10
5秒前
桐桐应助月亮采纳,获得10
7秒前
简单十三完成签到,获得积分10
7秒前
dd完成签到,获得积分20
7秒前
9秒前
12秒前
黑泡泡发布了新的文献求助10
13秒前
Tangyuan完成签到,获得积分10
13秒前
李蝶儿完成签到 ,获得积分10
14秒前
Wdw2236完成签到,获得积分20
14秒前
sqHALO完成签到,获得积分10
15秒前
zhanzhanzhan完成签到,获得积分10
16秒前
香蕉觅云应助Tangyuan采纳,获得10
18秒前
Swu完成签到,获得积分10
19秒前
19秒前
所所应助zuzu采纳,获得10
23秒前
23秒前
24秒前
无情的冰香完成签到 ,获得积分10
26秒前
朱一龙完成签到,获得积分10
26秒前
31秒前
Criminology34举报ddrose求助涉嫌违规
31秒前
阿朱完成签到 ,获得积分10
32秒前
汉堡包应助孔夫子采纳,获得10
33秒前
天天快乐应助庾稀采纳,获得10
33秒前
chengxiping发布了新的文献求助10
33秒前
33秒前
yangyangyang完成签到,获得积分10
34秒前
35秒前
JohanXu完成签到,获得积分10
36秒前
深情安青应助wd采纳,获得10
37秒前
39秒前
yyy发布了新的文献求助10
39秒前
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772052
求助须知:如何正确求助?哪些是违规求助? 5595492
关于积分的说明 15428899
捐赠科研通 4905183
什么是DOI,文献DOI怎么找? 2639251
邀请新用户注册赠送积分活动 1587158
关于科研通互助平台的介绍 1542040