Detail-Enhanced Wavelet Residual Network for Single Image Super-Resolution

计算机科学 人工智能 小波 残余物 计算机视觉 加权 图像(数学) 迭代重建 图像分辨率 模式识别(心理学) 算法 声学 物理
作者
Wei‐Yen Hsu,Pei-Wen Jian
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-13 被引量:25
标识
DOI:10.1109/tim.2022.3192280
摘要

Single-image super-resolution (SR) is vital in all areas of computer vision, due to the capability of the technology to generate high-resolution (HR) images. Conventional SR approaches do not consider high-frequency detail information during the reconstruction, resulting in high-frequency details of the image unreal, distorted in the reconstructed SR image. In this study, a novel detail-enhanced wavelet residual network (DeWRNet) is proposed to individually deal with the low- and high-frequency of sub-images and resolve the problem of the details over smooth with a novel low-to-high frequency transmission (L2HFT) and detail enhancement (DE) mechanism. Unlike traditional SR approaches, which directly predict high-resolution images, the proposed DeWRNet decomposes the image into low- and high-frequency ones through stationary wavelet transform, and trains low- and high-frequency sub-images with different models. Furthermore, while reconstructing high-frequency details, low-frequency structure is also provided to further restore and enhance high-frequency details by the proposed L2HFT and DE mechanism. Finally, the joint-loss function is used to optimize low- and high-frequency results in different degree of weighting. In addition to correct restoration, image details are further enhanced by adjusting different hyperparameters during training. Compared with the state-of-the-art approaches, the experimental results indicate that the proposed DeWRNet achieves a better performance and has excellent visual presentation, especially in image edges and texture details.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小青青完成签到,获得积分10
1秒前
Klay完成签到,获得积分10
1秒前
2秒前
dddyrrrrr完成签到 ,获得积分10
3秒前
3秒前
科研通AI6应助LQ采纳,获得30
4秒前
搜集达人应助善良的函采纳,获得10
5秒前
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
Hu发布了新的文献求助10
7秒前
Hello应助123采纳,获得10
7秒前
9秒前
可爱的函函应助默默问晴采纳,获得10
9秒前
soapffz完成签到,获得积分0
9秒前
田様应助伶俐的招牌采纳,获得10
10秒前
10秒前
10秒前
11秒前
无花果应助leec采纳,获得30
11秒前
炙热萝发布了新的文献求助10
12秒前
Auh完成签到,获得积分10
12秒前
AN发布了新的文献求助10
12秒前
hailey发布了新的文献求助10
14秒前
15秒前
zhuhe完成签到,获得积分10
15秒前
15秒前
丰知然应助小点点采纳,获得10
16秒前
13发布了新的文献求助10
16秒前
Hu完成签到,获得积分20
17秒前
17秒前
Hayat发布了新的文献求助50
17秒前
烟花应助灵巧的石头采纳,获得10
17秒前
18秒前
大模型应助调皮的巧凡采纳,获得10
18秒前
18秒前
18秒前
别管我了完成签到,获得积分10
18秒前
19秒前
yxy发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578047
求助须知:如何正确求助?哪些是违规求助? 4663043
关于积分的说明 14744355
捐赠科研通 4603721
什么是DOI,文献DOI怎么找? 2526643
邀请新用户注册赠送积分活动 1496203
关于科研通互助平台的介绍 1465657