电容感应
传感器
电容
噪音(视频)
加速度计
前端和后端
声学
灵敏度(控制系统)
噪声地板
电容式微机械超声换能器
模拟前端
寄生电容
电子工程
电气工程
信号(编程语言)
噪声测量
工程类
计算机科学
降噪
物理
机械工程
电极
CMOS芯片
量子力学
人工智能
图像(数学)
程序设计语言
操作系统
作者
Xian Zhang,Zhu Li,Shu Zou,Guanfang Wang,Hongfan Liu,Zhengwentao Cheng,Liangcheng Tu,Shan-Qing Yang
出处
期刊:IEEE Sensors Journal
[Institute of Electrical and Electronics Engineers]
日期:2022-07-01
卷期号:22 (13): 13005-13011
被引量:3
标识
DOI:10.1109/jsen.2022.3176053
摘要
Capacitive transducers are the core of electrostatic space accelerometers and have been applied in several space science missions. However, the noise of the front-end circuit in a capacitive transducer is a major limitation to capacitance resolution. The current theoretical models cannot accurately and comprehensively describe the performance of the front-end circuit in an ultra-high precision capacitive transducer. In this study, we modified the sensitivity and noise models of the front-end circuit and verified them by precision experiments. Under the guidance of the corrected models, we optimized the total stray capacitance by thickening the insulating layer between the shield and signal from 123 pF to 38 pF, thereby reducing the noise to 0.08 aF/Hz $^{\text {1/2}}$ . We believe that this work will support the development of an ultrasensitive electrostatic accelerometer for application in space science missions.
科研通智能强力驱动
Strongly Powered by AbleSci AI