Enhanced Automatic Root Recognition and Localization in GPR Images Through a YOLOv4-Based Deep Learning Approach

双曲线 探地雷达 人工智能 计算机科学 模式识别(心理学) 霍夫变换 领域(数学) 特征提取 计算机视觉 目标检测 词根(语言学) 雷达 图像(数学) 数学 哲学 电信 语言学 纯数学 几何学
作者
Shupeng Li,Xihong Cui,Li Guo,Luyun Zhang,Xuehong Chen,Xin Cao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-14 被引量:25
标识
DOI:10.1109/tgrs.2022.3181202
摘要

In recent years, ground penetrating radar (GPR) has become increasingly important as a nondestructive way to explore plant roots. Automatic recognition and localization of root objects from GPR images presents a significant challenge. GPR images for the root system contain complicated hyperbolic signals that appear deformation depending on root size, orientation, aggregation degree and soil background. This paper presents a new deep learning approach, YOLOv4-hyperbola, that provides fully automatic recognition and localization of root objects from GPR images. YOLOv4-hyperbola improves the YOLOv4 (You Only Look Once v4) architecture by introducing keypoints detection branch in order to accurately locate roots while identifying them. The YOLOv4-hyperbola model was trained by combining field datasets and simulated datasets to simultaneously identify and locate hyperbolic features representing potential root objects across GPR images, and evaluated on datasets of root detection from two experiments in the field. Compared with Randomized Hough transform (RHT) method, the proposed approach demonstrated higher accuracy and efficiency in root object detection on GPR image. YOLOv4-hyperbola was able to accurately recognize and locate abnormal hyperbolic signals caused by the complexity of root system in nature. The validation on the two independent datasets showed that the proposed approach had good generalization and great application potential for real-time detection and location of roots over large areas in the field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
周坚强应助坦率的依风采纳,获得10
1秒前
林莹发布了新的文献求助10
1秒前
wfafggga发布了新的文献求助10
1秒前
王阳洋应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
2秒前
爆米花应助医生采纳,获得10
3秒前
heiztcasino发布了新的文献求助10
3秒前
3秒前
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
杳鸢应助jinyu采纳,获得10
3秒前
张萌发布了新的文献求助10
3秒前
4秒前
张贵虎完成签到 ,获得积分10
4秒前
4秒前
领导范儿应助疑问师采纳,获得10
4秒前
杳鸢应助吴媛媛采纳,获得20
5秒前
潘多拉发布了新的文献求助10
5秒前
山东老铁发布了新的文献求助10
6秒前
6秒前
朴实桐应助坦率的依风采纳,获得10
6秒前
heiztcasino完成签到,获得积分10
7秒前
8秒前
勤劳糜发布了新的文献求助20
9秒前
kaly发布了新的文献求助10
9秒前
杳鸢应助wfafggga采纳,获得10
10秒前
大力元冬发布了新的文献求助10
11秒前
科研通AI5应助沐沐采纳,获得10
11秒前
lucy完成签到,获得积分10
13秒前
小麦子发布了新的文献求助10
13秒前
科研小民工应助maimai采纳,获得30
14秒前
科研通AI2S应助dpk采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Oligomycin, a new antifungal antibiotic 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3583709
求助须知:如何正确求助?哪些是违规求助? 3152941
关于积分的说明 9494725
捐赠科研通 2855533
什么是DOI,文献DOI怎么找? 1569583
邀请新用户注册赠送积分活动 735443
科研通“疑难数据库(出版商)”最低求助积分说明 721228